
Tito Dal Canton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/37782/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	7.8	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	7.8	6,413
3	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	8.3	2,805
4	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	7.8	2,701
5	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	8.3	2,314
6	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	8.9	2,022
7	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
8	Advanced LIGO. Classical and Quantum Gravity, 2015, 32, 074001.	4.0	1,929
9	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	7.8	1,600
10	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	7.8	1,224
11	An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A. Astrophysical Journal Letters, 2017, 848, L14.	8.3	1,038
12	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	4.0	1,029
13	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	8.3	968
14	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	8.9	898
15	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
16	Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity, 2017, 34, 044001.	4.0	735
17	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	7.8	673
18	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633

TITO DAL CANTON

#	Article	IF	CITATIONS
19	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	8.3	566
20	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D, 2019, 100, .	4.7	470
21	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466
22	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
23	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
24	The PyCBC search for gravitational waves from compact binary coalescence. Classical and Quantum Gravity, 2016, 33, 215004.	4.0	393
25	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	4.7	315
26	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	8.3	230
27	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
28	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	8.3	210
29	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	7.8	166
30	Detecting Binary Compact-object Mergers with Gravitational Waves: Understanding and Improving the Sensitivity of the PyCBC Search. Astrophysical Journal, 2017, 849, 118.	4.5	148
31	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	8.3	146
32	Implementing a search for aligned-spin neutron star-black hole systems with advanced ground based gravitational wave detectors. Physical Review D, 2014, 90, .	4.7	143
33	LIGO detector characterization in the second and third observing runs. Classical and Quantum Gravity, 2021, 38, 135014.	4.0	128
34	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	8.9	106
35	Rapid detection of gravitational waves from compact binary mergers with PyCBC Live. Physical Review D, 2018, 98, .	4.7	87
36	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	4.7	73

TITO DAL CANTON

#	Article	IF	CITATIONS
37	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	4.5	71
38	Exploring the Bayesian parameter estimation of binary black holes with LISA. Physical Review D, 2021, 103, .	4.7	47
39	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	7.7	44
40	First Demonstration of Early Warning Gravitational-wave Alerts. Astrophysical Journal Letters, 2021, 910, L21.	8.3	33
41	Real-time Search for Compact Binary Mergers in Advanced LIGO and Virgo's Third Observing Run Using PyCBC Live. Astrophysical Journal, 2021, 923, 254.	4.5	30
42	Effect of sine-Gaussian glitches on searches for binary coalescence. Classical and Quantum Gravity, 2014, 31, 015016.	4.0	29
43	Sensitivity of gravitational wave searches to the full signal of intermediate-mass black hole binaries during the first observing run of Advanced LIGO. Physical Review D, 2018, 97, .	4.7	29
44	Parameter estimation of stellar-mass black hole binaries with LISA. Physical Review D, 2020, 102, .	4.7	28
45	Coincident Detection Significance in Multimessenger Astronomy. Astrophysical Journal, 2018, 860, 6.	4.5	27
46	Gravitational-wave Merger Forecasting: Scenarios for the Early Detection and Localization of Compact-binary Mergers with Ground-based Observatories. Astrophysical Journal Letters, 2020, 902, L29.	8.3	27
47	Pre-merger Localization of Compact-binary Mergers with Third-generation Observatories. Astrophysical Journal Letters, 2021, 917, L27.	8.3	22
48	Electromagnetic Chirps from Neutron Star–Black Hole Mergers. Astrophysical Journal, 2018, 853, 123.	4.5	21
49	Analysis of Sub-threshold Short Gamma-Ray Bursts in Fermi GBM Data. Astrophysical Journal, 2018, 862, 152.	4.5	21
50	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
51	Impact of precession on aligned-spin searches for neutron-star–black-hole binaries. Physical Review D, 2015, 91, .	4.7	18
52	Detectability of Modulated X-Rays from LISA's Supermassive Black Hole Mergers. Astrophysical Journal, 2019, 886, 146.	4.5	16
53	Fermi Observations of the LIGO Event GW170104. Astrophysical Journal Letters, 2017, 846, L5.	8.3	15
54	An Infrared Search for Kilonovae with the WINTER Telescope. I. Binary Neutron Star Mergers. Astrophysical Journal, 2022, 926, 152.	4.5	10

TITO DAL CANTON

#	Article	IF	CITATIONS
55	Classifier for gravitational-wave inspiral signals in nonideal single-detector data. Physical Review D, 2017, 96, .	4.7	9
56	Stochastic template bank for gravitational wave searches for precessing neutron-star–black-hole coalescence events. Physical Review D, 2017, 95, .	4.7	9
57	Fermi-GBM Follow-up of LIGO-Virgo Binary Black Hole Mergers: Detection Prospects. Astrophysical Journal, 2019, 882, 53.	4.5	7
58	Search for advanced LIGO single interferometer compact binary coalescence signals in coincidence with Gamma-ray events in Fermi-GBM. Classical and Quantum Gravity, 2020, 37, 175001.	4.0	6
59	Gravitational waves: search results, data analysis and parameter estimation. General Relativity and Gravitation, 2015, 47, 11.	2.0	4
60	Searches for Modulated Î ³ -Ray Precursors to Compact Binary Mergers in Fermi-GBM Data. Astrophysical Journal, 2022, 930, 45.	4.5	4
61	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
62	Identification of gravitational wave signals from chaotic astrophysical systems through phase space and attractor properties. Physical Review D, 2009, 80, .	4.7	0