
Brandon Faubert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3777848/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Compartmentalized metabolism supports midgestation mammalian development. Nature, 2022, 604, 349-353.	13.7	47
2	Lyso-PAF, a biologically inactive phospholipid, contributes to RAF1 activation. Molecular Cell, 2022, 82, 1992-2005.e9.	4.5	5
3	Cellular signals converge at the NOX2-SHP-2 axis to induce reductive carboxylation in cancer cells. Cell Chemical Biology, 2022, , .	2.5	2
4	Isotope tracing reveals glycolysis and oxidative metabolism in childhood tumors of multiple histologies. Med, 2021, 2, 395-410.e4.	2.2	21
5	Stable isotope tracing to assess tumor metabolism in vivo. Nature Protocols, 2021, 16, 5123-5145.	5.5	40
6	Detection of glucose-derived d- and l-lactate in cancer cells by the use of a chiral NMR shift reagent. Cancer & Metabolism, 2021, 9, 38.	2.4	8
7	Does Tumor FDG-PET Avidity Represent Enhanced Glycolytic Metabolism in Non-Small Cell Lung Cancer?. Annals of Thoracic Surgery, 2020, 109, 1019-1025.	0.7	21
8	Metabolic heterogeneity confers differences in melanoma metastatic potential. Nature, 2020, 577, 115-120.	13.7	298
9	The hexosamine biosynthesis pathway is a targetable liability in KRAS/LKB1 mutant lung cancer. Nature Metabolism, 2020, 2, 1401-1412.	5.1	82
10	Concentration-dependent Early Antivascular and Antitumor Effects of Itraconazole in Non–Small Cell Lung Cancer. Clinical Cancer Research, 2020, 26, 6017-6027.	3.2	16
11	Metabolic reprogramming and cancer progression. Science, 2020, 368, .	6.0	1,054
12	p63 and SOX2 Dictate Glucose Reliance and Metabolic Vulnerabilities in Squamous Cell Carcinomas. Cell Reports, 2019, 28, 1860-1878.e9.	2.9	68
13	AIF: an acquired metabolic liability in lung cancer. Cell Research, 2019, 29, 607-608.	5.7	0
14	Metabolic Profiling Using Stable Isotope Tracing Reveals Distinct Patterns of Glucose Utilization by Physiologically Activated CD8+ T Cells. Immunity, 2019, 51, 856-870.e5.	6.6	250
15	Metabolic Diversity in Human Non-Small Cell Lung Cancer Cells. Molecular Cell, 2019, 76, 838-851.e5.	4.5	119
16	Functional Assessment of Lipoyltransferase-1 Deficiency in Cells, Mice, and Humans. Cell Reports, 2019, 27, 1376-1386.e6.	2.9	55
17	Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity. Nature, 2019, 566, 403-406.	13.7	326
18	Reactive metabolite production is a targetable liability of glycolytic metabolism in lung cancer. Nature Communications, 2019, 10, 5604.	5.8	45

BRANDON FAUBERT

#	Article	IF	CITATIONS
19	CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells. Nature, 2017, 546, 168-172.	13.7	222
20	AMPK Maintains Cellular Metabolic Homeostasis through Regulation of Mitochondrial Reactive Oxygen Species. Cell Reports, 2017, 21, 1-9.	2.9	405
21	Lactate Metabolism in Human Lung Tumors. Cell, 2017, 171, 358-371.e9.	13.5	899
22	Analyzing Tumor Metabolism In Vivo. Annual Review of Cancer Biology, 2017, 1, 99-117.	2.3	33
23	Metabolic Heterogeneity in Human Lung Tumors. Cell, 2016, 164, 681-694.	13.5	830
24	Metformin Antagonizes Cancer Cell Proliferation by Suppressing Mitochondrial-Dependent Biosynthesis. PLoS Biology, 2015, 13, e1002309.	2.6	176
25	LKB1 couples glucose metabolism to insulin secretion in mice. Diabetologia, 2015, 58, 1513-1522.	2.9	22
26	Oncogenic Myc Induces Expression of Glutamine Synthetase through Promoter Demethylation. Cell Metabolism, 2015, 22, 1068-1077.	7.2	189
27	Resveratrol prevents insulin resistance caused by short-term elevation of free fatty acids in vivo. Applied Physiology, Nutrition and Metabolism, 2015, 40, 1129-1136.	0.9	25
28	The AMP-activated protein kinase (AMPK) and cancer: Many faces of a metabolic regulator. Cancer Letters, 2015, 356, 165-170.	3.2	289
29	Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1α. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2554-2559.	3.3	212
30	The tumor suppressor folliculin regulates AMPK-dependent metabolic transformation. Journal of Clinical Investigation, 2014, 124, 2640-2650.	3.9	124
31	PGC-1α supports glutamine metabolism in breast cancer. Cancer & Metabolism, 2013, 1, 22.	2.4	130
32	AMPK Is a Negative Regulator of the Warburg Effect and Suppresses Tumor Growth InÂVivo. Cell Metabolism, 2013, 17, 113-124.	7.2	754
33	Depletion of the novel p53-target gene carnitine palmitoyltransferase 1C delays tumor growth in the neurofibromatosis type I tumor model. Cell Death and Differentiation, 2013, 20, 659-668.	5.0	81
34	The eEF2 Kinase Confers Resistance to Nutrient Deprivation by Blocking Translation Elongation. Cell, 2013, 153, 1064-1079.	13.5	348
35	Posttranscriptional Control of T Cell Effector Function by Aerobic Glycolysis. Cell, 2013, 153, 1239-1251.	13.5	1,715
36	CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14336-14341.	3.3	428

#	Article	IF	CITATIONS
37	Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes and Development, 2011, 25, 1041-1051.	2.7	386
38	Signaling Kinase AMPK Activates Stress-Promoted Transcription via Histone H2B Phosphorylation. Science, 2010, 329, 1201-1205.	6.0	320
39	Naringenin, a citrus flavonoid, increases muscle cell glucose uptake via AMPK. Biochemical and Biophysical Research Communications, 2010, 398, 178-183.	1.0	185