List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3777622/publications.pdf Version: 2024-02-01

FEDERICO ROSIA

#	Article	IF	CITATIONS
1	Experimental and Numerical Study of the Effect of Surface Patterning on the Frictional Properties of Polymer Surfaces. Journal of Tribology, 2022, 144, .	1.9	4
2	Tuning of frictional properties in torsional contact by means of disk grading. Friction, 2022, 10, 787-802.	6.4	2
3	A 3D Griffith peeling model toÂunify and generalize single and double peeling theories. Meccanica, 2022, 57, 1125-1138.	2.0	0
4	Correlation between slip precursors and topological length scales at the onset of frictional sliding. International Journal of Solids and Structures, 2022, 243, 111525.	2.7	6
5	Unveiling a new shear stress transfer mechanism in composites with helically wound hierarchicalÂfibres. International Journal of Mechanical Sciences, 2021, 192, 106135.	6.7	10
6	Hierarchical large-scale elastic metamaterials for passive seismic wave mitigation. EPJ Applied Metamaterials, 2021, 8, 14.	1.5	14
7	Robust substrate anchorages of silk lines with extensible nano-fibres. Soft Matter, 2021, 17, 7903-7913.	2.7	1
8	Attenuating surface gravity waves with mechanical metamaterials. Physics of Fluids, 2021, 33, .	4.0	9
9	Band gap enhancement in periodic frames using hierarchical structures. International Journal of Solids and Structures, 2021, 216, 68-82.	2.7	19
10	Adhesion and plasticity in the dynamic response of rough surfaces in contact. International Journal of Solids and Structures, 2021, 216, 17-29.	2.7	3
11	Dissipative Dynamics of Polymer Phononic Materials. Advanced Functional Materials, 2021, 31, 2103424.	14.9	23
12	Experimental full wavefield reconstruction and band diagram analysis in a single-phase phononic plate with internal resonators. Journal of Sound and Vibration, 2021, 503, 116098.	3.9	13
13	Topologically engineered 3D printed architectures with superior mechanical strength. Materials Today, 2021, 48, 72-94.	14.2	37
14	Improving rubber concrete strength and toughness by plasmaâ€induced endâ€ofâ€iife tire rubber surface modification. Plasma Processes and Polymers, 2021, 18, 2100081.	3.0	17
15	Hierarchical auxetic and isotropic porous medium with extremely negative Poisson's ratio. Extreme Mechanics Letters, 2021, 48, 101405.	4.1	30
16	Optimization of spider web-inspired phononic crystals to achieve tailored dispersion for diverse objectives. Materials and Design, 2021, 209, 109980.	7.0	12
17	Creation of pure non-crystalline diamond nanostructures via room-temperature ion irradiation and subsequent thermal annealing. Nanoscale Advances, 2021, 3, 4156-4165.	4.6	1
18	How bio-inspiration enhances the potential of phononic crystals and metamaterials. , 2021, , .		0

#	Article	IF	CITATIONS
19	A theoretical-numerical model for the peeling of elastic membranes. Journal of the Mechanics and Physics of Solids, 2020, 136, 103733.	4.8	13
20	Editorial: Bioinspired wet and dry adhesion. Bioinspiration and Biomimetics, 2020, 15, 040401.	2.9	1
21	The role of hairs in the adhesion of octopus suckers: a hierarchical peeling approach. Bioinspiration and Biomimetics, 2020, 15, 035006.	2.9	13
22	A combined experimental/numerical study on the scaling of impact strength and toughness in composite laminates for ballistic applications. Composites Part B: Engineering, 2020, 195, 108090.	12.0	20
23	Evolutionary Algorithm Optimization of Staggered Biological or Biomimetic Composites Using the Random Fuse Model. Physical Review Applied, 2020, 13, .	3.8	5
24	Random fuse model in the presence of self-healing. New Journal of Physics, 2020, 22, 033005.	2.9	5
25	Hierarchical Large-Scale Elastic Metamaterials as an Innovative Passive Isolation Strategy for Seismic Wave Mitigation. , 2020, , .		0
26	Tunable frequency band structure in photo-responsive elastic metamaterials. , 2020, , .		0
27	Evolution of aerial spider webs coincided with repeated structural optimization of silk anchorages. Evolution; International Journal of Organic Evolution, 2019, 73, 2122-2134.	2.3	25
28	Proof of concept of a frequency-preserving and time-invariant metamaterial-based nonlinear acoustic diode. Scientific Reports, 2019, 9, 9560.	3.3	26
29	An experimental-numerical study of the adhesive static and dynamic friction of micro-patterned soft polymer surfaces. Materials and Design, 2019, 181, 107930.	7.0	15
30	Quantum Micro–Nano Devices Fabricated in Diamond by Femtosecond Laser and Ion Irradiation (Adv.) Tj ETQo	10 9 9 rgB ⁻	[/gverlock 1
31	Quantum Micro–Nano Devices Fabricated in Diamond by Femtosecond Laser and Ion Irradiation. Advanced Quantum Technologies, 2019, 2, 1900006.	3.9	31
32	Application of a Laser-Based Time Reversal Algorithm for Impact Localization in a Stiffened Aluminum Plate. Frontiers in Materials, 2019, 6, .	2.4	20
33	Competition between delamination and tearing in multiple peeling problems. Journal of the Royal Society Interface, 2019, 16, 20190388.	3.4	3
34	Modeling and simulation in tribology across scales: An overview. Tribology International, 2018, 125, 169-199.	5.9	335
35	The influence of substrate roughness, patterning, curvature, and compliance in peeling problems. Bioinspiration and Biomimetics, 2018, 13, 026004.	2.9	15
36	Polarized micro-Raman studies of femtosecond laser written stress-induced optical waveguides in diamond. Applied Physics Letters, 2018, 112, .	3.3	21

#	Article	IF	CITATIONS
37	Grafting carbon nanotubes onto carbon fibres doubles their effective strength and the toughness of the composite. Composites Science and Technology, 2018, 166, 140-149.	7.8	29
38	A 2-D model for friction of complex anisotropic surfaces. Journal of the Mechanics and Physics of Solids, 2018, 112, 50-65.	4.8	22
39	Hybrid metamaterials combining pentamode lattices and phononic plates. Applied Physics Letters, 2018, 113, .	3.3	27
40	Tunable extremely wide low-frequency band gaps in accordion-like metamaterials. , 2018, , .		1
41	Evidence of friction reduction in laterally graded materials. Beilstein Journal of Nanotechnology, 2018, 9, 2443-2456.	2.8	4
42	Editorial: Advances in Mechanical Metamaterials. Frontiers in Materials, 2018, 5, .	2.4	3
43	Tuning the strain-induced resonance shift in silicon racetrack resonators by their orientation. Optics Express, 2018, 26, 4204.	3.4	7
44	Mapping the Local Spatial Charge in Defective Diamond by Means of N- <i>V</i> Sensors—A Self-Diagnostic Concept. Physical Review Applied, 2018, 10, .	3.8	15
45	Labyrinthine Acoustic Metamaterials with Space-Coiling Channels for Low-Frequency Sound Control. Acta Acustica United With Acustica, 2018, 104, 200-210.	0.8	45
46	Experimental Observation of a Large Low-Frequency Band Gap in a Polymer Waveguide. Frontiers in Materials, 2018, 5, .	2.4	19
47	Accordion-like metamaterials with tunable ultra-wide low-frequency band gaps. New Journal of Physics, 2018, 20, 073051.	2.9	58
48	Design and Fabrication of Bioinspired Hierarchical Dissipative Elastic Metamaterials. Physical Review Applied, 2018, 10, .	3.8	80
49	Emergence of the interplay between hierarchy and contact splitting in biological adhesion highlighted through a hierarchical shear lag model. Soft Matter, 2018, 14, 5509-5518.	2.7	7
50	Coupling local resonance with Bragg band gaps in single-phase mechanical metamaterials. Extreme Mechanics Letters, 2017, 12, 30-36.	4.1	164
51	Hierarchical Spring-Block Model for Multiscale Friction Problems. ACS Biomaterials Science and Engineering, 2017, 3, 2845-2852.	5.2	13
52	Bulk diamond optical waveguides fabricated by focused femtosecond laser pulses. , 2017, , .		0
53	A hybrid deterministic-probabilistic approach to model the mechanical response of helically arranged hierarchical strands. Journal of the Mechanics and Physics of Solids, 2017, 106, 338-352.	4.8	9
54	Spider web-structured labyrinthine acoustic metamaterials for low-frequency sound control. New Journal of Physics, 2017, 19, 105001.	2.9	92

#	Article	IF	CITATIONS
55	Tuning friction with composite hierarchical surfaces. Tribology International, 2017, 115, 261-267.	5.9	11
56	Optimal Adhesion Control via Cooperative Hierarchy, Grading, Geometries and Non-linearity of Anchorages and Adhesive Pads. Biologically-inspired Systems, 2017, , 81-93.	0.2	1
57	Spider silk reinforced by graphene or carbon nanotubes. 2D Materials, 2017, 4, 031013.	4.4	57
58	Proof of Concept for an Ultrasensitive Technique to Detect and Localize Sources of Elastic Nonlinearity Using Phononic Crystals. Physical Review Letters, 2017, 118, 214301.	7.8	128
59	Dissipative elastic metamaterials. , 2017, , .		0
60	Fractal and spider web-inspired labyrinthine acoustic metamaterials. , 2017, , .		2
61	Hierarchical bio-inspired dissipative metamaterials for low frequency attenuation. , 2017, , .		1
62	Refractive index variation in a free-standing diamond thin film induced by irradiation with fully transmitted high-energy protons. Scientific Reports, 2017, 7, 385.	3.3	15
63	Softening the ultra-stiff: Controlled variation of Young's modulus in single-crystal diamond by ion implantation. Acta Materialia, 2016, 116, 95-103.	7.9	30
64	Static and dynamic friction of hierarchical surfaces. Physical Review E, 2016, 94, 063003.	2.1	35
65	Spider web-inspired acoustic metamaterials. Applied Physics Letters, 2016, 109, .	3.3	79
66	An experimental and numerical study on the mechanical properties of carbon nanotube-latex thin films. Journal of the European Ceramic Society, 2016, 36, 2255-2262.	5.7	16
67	Computational modeling of the mechanics of hierarchical materials. MRS Bulletin, 2016, 41, 694-699.	3.5	10
68	Micro and nano-patterning of single-crystal diamond by swift heavy ion irradiation. Diamond and Related Materials, 2016, 69, 1-7.	3.9	9
69	Large scale mechanical metamaterials as seismic shields. New Journal of Physics, 2016, 18, 083041.	2.9	246
70	Knotted synthetic polymer or carbon nanotube microfibres with enhanced toughness, up to 1400 J/g. Carbon, 2016, 102, 116-125.	10.3	12
71	Characterization of the recovery of mechanical properties of ion-implanted diamond after thermal annealing. Diamond and Related Materials, 2016, 63, 75-79.	3.9	7
72	Metamaterials-based sensor to detect and locate nonlinear elastic sources. Applied Physics Letters, 2015, 107, .	3.3	43

#	Article	IF	CITATIONS
73	A Hierarchical Lattice Spring Model to Simulate the Mechanics of 2-D Materials-Based Composites. Frontiers in Materials, 2015, 2, .	2.4	24
74	Numerical implementation of multiple peeling theory and its application to spider web anchorages. Interface Focus, 2015, 5, 20140051.	3.0	18
75	Fatigue of self-healing hierarchical soft nanomaterials: The case study of the tendon in sportsmen. Journal of Materials Research, 2015, 30, 2-9.	2.6	6
76	Micro-beam and pulsed laser beam techniques for the micro-fabrication of diamond surface and bulk structures. Nuclear Instruments & Methods in Physics Research B, 2015, 348, 191-198.	1.4	3
77	Hierarchical multiple peeling simulations. RSC Advances, 2014, 4, 25447-25452.	3.6	18
78	An analytical model for the mechanical deformation of locally graphitized diamond. Diamond and Related Materials, 2014, 48, 73-81.	3.9	9
79	Self-Healing of Hierarchical Materials. Langmuir, 2014, 30, 1123-1133.	3.5	17
80	Structural reinforcement and failure analysis in composite nanofibers of graphene oxide and gelatin. Carbon, 2014, 78, 566-577.	10.3	81
81	Systematic numerical investigation of the role of hierarchy in heterogeneous bio-inspired materials. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 19, 34-42.	3.1	4
82	Splitting of photoluminescent emission from nitrogen–vacancy centers in diamond induced by ion-damage-induced stress. New Journal of Physics, 2013, 15, 043027.	2.9	26
83	Direct measurement and modelling of internal strains in ion-implanted diamond. Journal of Physics Condensed Matter, 2013, 25, 385403.	1.8	22
84	<i>In silico</i> tensile tests and design of hierarchical graphene fibres and composites. Physica Status Solidi (B): Basic Research, 2013, 250, 1492-1495.	1.5	3
85	Spectroscopic measurement of the refractive index of ion-implanted diamond. Optics Letters, 2012, 37, 671.	3.3	25
86	Publisher's Note: Hierarchical fiber bundle model to investigate the complex architectures of biological materials [Phys. Rev. E85, 011903 (2012)]. Physical Review E, 2012, 85, .	2.1	0
87	Hierarchical fiber bundle model to investigate the complex architectures of biological materials. Physical Review E, 2012, 85, 011903.	2.1	37
88	Investigating the role of hierarchy on the strength of composite materials: evidence of a crucial synergy between hierarchy and material mixing. Nanoscale, 2012, 4, 1200.	5.6	34
89	Modification of the structure of diamond with MeV ion implantation. Diamond and Related Materials, 2011, 20, 774-778.	3.9	25
90	Finite element analysis of ion-implanted diamond surface swelling. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 2991-2995.	1.4	32

#	Article	IF	CITATIONS
91	Space charge limited current (SCLC) as observed on diamond surface damaged by MeV ion implantation. IOP Conference Series: Materials Science and Engineering, 2010, 16, 012004.	0.6	2
92	Publisher's Note: Hierarchical simulations for the design of supertough nanofibers inspired by spider silk [Phys. Rev. E 82 , 056103 (2010)]. Physical Review E, 2010, 82, .	2.1	1
93	Hierarchical simulations for the design of supertough nanofibers inspired by spider silk. Physical Review E, 2010, 82, 056103.	2.1	39
94	Evidence of Light Guiding in Ion-Implanted Diamond. Physical Review Letters, 2010, 105, 233903.	7.8	49
95	Self-similarity of waiting times in fracture systems. Physical Review E, 2009, 80, 026101.	2.1	24
96	Through-the-Thickness Deformation of Composite Laminates Subjected to Bending. Journal of the Mechanical Behavior of Materials, 2009, 19, 167-176.	1.8	0
97	Size effects on the strength of nanotube bundles. Measurement Science and Technology, 2009, 20, 084028.	2.6	5
98	Modification of the electrical and optical Properties of Single Crystal Diamond with Focused MeV Ion Beams. Materials Research Society Symposia Proceedings, 2009, 1203, 1.	0.1	0
99	Scaling properties of nanotube-based macroscopic cables through multiscale numerical simulations. IEEE Nanotechnology Magazine, 2009, 3, 14-19.	1.3	3
100	Multiscale Stochastic Simulations for Tensile Testing of Nanotubeâ€Based Macroscopic Cables. Small, 2008, 4, 1044-1052.	10.0	48
101	Mesoscopic modeling of Acoustic Emission through an energetic approach. International Journal of Solids and Structures, 2008, 45, 5856-5866.	2.7	23
102	Phenomenological approach to mechanical damage growth analysis. Physical Review E, 2008, 78, 046103.	2.1	21
103	Modelling Damage Progression by a Statistical Energy-Balance Algorithm. Key Engineering Materials, 2007, 347, 435-440.	0.4	0
104	Preisach-Mayergoyz approach to fatigue-induced irreversibility. Physical Review B, 2006, 73, .	3.2	8
105	Subharmonic generation in physical systems: An interaction-box approach. Wave Motion, 2006, 43, 689-699.	2.0	2
106	Numerical Analysis of the Anomalous Elastic Behavior of Hysteretic Media: Quasistatic, Dynamic, and Relaxation Experiments. , 2006, , 269-285.		0
107	Smart composites with embedded shape memory alloy actuators and fibre Bragg grating sensors: activation and control. Smart Materials and Structures, 2005, 14, 457-465.	3.5	37
108	Through-the-thickness distribution of strains in laminated composite plates subjected to bending. Composites Science and Technology, 2004, 64, 71-82.	7.8	16

FEDERICO BOSIA

#	Article	IF	CITATIONS
109	Characterization of the response of fibre Bragg grating sensors subjected to a two-dimensional strain field. Smart Materials and Structures, 2003, 12, 925-934.	3.5	70
110	Modeling of the residual stresses acting on a low-birefringence fiber Bragg grating sensor embedded in an epoxy matrix. , 2003, 5049, 506.		3
111	<title>Characterization of embedded fiber Bragg grating sensors written in high-birefringent optical fibers subjected to transverse loading</title> . , 2002, , .		8
112	Deformation characteristics of composite laminates—part I: speckle interferometry and embedded Bragg grating sensor measurements. Composites Science and Technology, 2002, 62, 41-54.	7.8	36
113	Deformation characteristics of composite laminates—part II: an experimental/numerical study on equivalent single-layer theories. Composites Science and Technology, 2002, 62, 55-66.	7.8	14
114	OBLIQUE ACOUSTIC AXES IN TRIGONAL CRYSTALS. Journal of Computational Acoustics, 2001, 09, 1147-1161.	1.0	6
115	Effects of piezoelectricity on acoustic axes in crystals. Annales De Chimie: Science Des Materiaux, 2001, 26, 59-62.	0.4	1
116	Experimental Analysis of Composite Laminates Subjected to Bending. , 2000, , 355-362.		0
117	Types of leaky SAW degeneracy in crystals. , 0, , .		3
118	Leaky SAW branches coupled with oblique acoustic axes in trigonal crystals. , 0, , .		1
119	Prey Impact Localization Enabled by Material and Structural Interaction in Spider Orb Webs. Advanced Theory and Simulations, 0, , 2100282.	2.8	3