Satoshi Emura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/377760/publications.pdf

Version: 2024-02-01

236925 276875 1,974 91 25 41 citations h-index g-index papers 95 95 95 1021 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Crystallography and deformation behavior of î± phase precipitate at twin/matrix interface in a cold rolled metastable Ti-12Mo alloy. Journal of Alloys and Compounds, 2022, 892, 162234.	5. 5	6
2	Transformation-induced plasticity via γ → ε → α' and γ → ε → γ martensitic transformations in Fe–15Mn–10Cr–8Ni–4Si alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142583.	5.6	8
3	Clustering Analysis of Acoustic Emission Signals during Compression Tests in Mille-Feuille Structure Materials. Materials Transactions, 2022, 63, .	1.2	1
4	Effect of macrozones on fatigue crack initiation and propagation mechanisms in a forged ti-6Al-4V alloy under fully-reversed condition. Materialia, 2022, 22, 101401.	2.7	11
5	Potential Rink band formation on <mml:math altimg="si7.svg" display="inline" id="d1e257" xmins:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>l±</mml:mi><mml:mo>/</mml:mo><mml:mi>l²</mml:mi><td>nៅ:ខាath> .</td><td>5</td></mml:mrow></mml:math>	n ៅ: ខាath> .	5
6	The Role of Crystallographic Texture and Basal Plane Slip on Microstructurally Short Fatigue Crack Initiation and Propagation in Forged Billet and Rolled Bar Ti-6Al-4V Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 3821-3838.	2.2	10
7	Microstructure-twinning relations in beta-Ti alloys. MATEC Web of Conferences, 2020, 321, 12021.	0.2	0
8	Effects of Mo segregation on Charpy absorbed energy in Ti-12Mo alloys. MATEC Web of Conferences, 2020, 321, 11050.	0.2	1
9	Effect of Quasi-Hydrostatic Pressure on Deformation Mechanism in Ti-10Mo Alloy. Metals, 2020, 10, 1387.	2.3	1
10	Introduction of Mille-Feuille-Like α∫β Layered Structure into Ti–Mo Alloy. Materials Transactions, 2020, 61, 856-861.	1.2	8
11	Deformation mechanisms and effect of oxygen addition on mechanical properties of Ti-7.5Mo alloy with α―martensite. MATEC Web of Conferences, 2020, 321, 11059.	0.2	1
12	Coupling effect of deformation mode and temperature on tensile properties in TWIP type Ti–Mo alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 766, 138363.	5.6	24
13	Enhancement of impact toughness of β-type Ti–Mo alloy by {332}<113> twinning. Journal of Materials Science, 2019, 54, 11279-11291.	3.7	26
14	Twinning behavior of orthorhombic-l̂±â€•martensite in a Ti-7.5Mo alloy. Science and Technology of Advanced Materials, 2019, 20, 401-411.	6.1	39
15	Very High-Cycle Fatigue and High-Cycle Fatigue of Minor Boron-Modified Ti–6Al–4V Alloy. Materials Transactions, 2019, 60, 2213-2222.	1.2	10
16	Hot Working Flow Behavior of Ti-6242S Alloy. Materials Performance and Characterization, 2019, 8, 782-795.	0.3	1
17	Measurement and Prediction of Temperature Increase during Isothermal Forging of Titanium–6 Aluminum–4 Vanadium. Materials Performance and Characterization, 2019, 8, 389-401.	0.3	3
18	Effect of Pre-cold Rolling-Induced Twins and Subsequent Precipitated ω-Phase on Mechanical Properties in a β-Type Ti–Mo Alloy. Acta Metallurgica Sinica (English Letters), 2018, 31, 604-614.	2.9	6

#	Article	IF	CITATIONS
19	Mo segregation and distribution in Ti–Mo alloy investigated using nanoindentation. Materials Science & Lamp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 718, 48-55.	5.6	50
20	Formation of equiaxed \hat{l}_{\pm} phase in Ti-5Al-5Mo-5V-3Cr alloy deformed by high-pressure torsion. Journal of Alloys and Compounds, 2018, 738, 283-291.	5 . 5	13
21	Relationship between microstructures, facet morphologies at the high-cycle fatigue (HCF) crack initiation site, and HCF strength in Ti-6242S. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 727, 43-50.	5.6	7
22	Improvement of ductility in Ti-5Al-5Mo-5V-3Cr alloy by network-like precipitation of blocky α phase. Materials Science & Discourse and Processing, 2018, 722, 129-135.	5.6	25
23	Effect of oxygen addition on microstructures and mechanical properties of Ti-7.5Mo alloy. Journal of Alloys and Compounds, 2018, 737, 221-229.	5.5	45
24	Twinning and Detwinning Mechanisms in Beta-Ti Alloys. Materials Science Forum, 2018, 941, 821-826.	0.3	2
25	Quantitative analysis of {332}ã€^113〉 twinning in a Ti-15Mo alloy by <i>in situ</i> scanning electron microscopy. Science and Technology of Advanced Materials, 2018, 19, 474-483.	6.1	7
26	Continuous microstructure evolution of ball rolled TWIP Ti 15Mo alloy and its effect on phase precipitation behavior. Materials Characterization, 2018, 145, 116-125.	4.4	5
27	Microstructural evolution and its effect on the mechanical behavior of Ti-5Al-5Mo-5V-3Cr alloy during aging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 731, 239-248.	5.6	27
28	Effects of microstructure on fatigue properties of structural titanium alloys. The Proceedings of the Materials and Mechanics Conference, 2018, 2018, OS1421.	0.0	0
29	Effect of oxygen content on deformation mode and corrosion behavior in \hat{l}^2 -type Ti-Mo alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 684, 534-541.	5.6	46
30	Accommodative {332}ã€^113〉 primary and secondary twinning in a slightly deformed β-type Ti-Mo titanium alloy. Materials Science & Diplomary: Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 684, 456-465.	5.6	46
31	Strain-rate effect on work-hardening behavior in \hat{l}^2 -type Ti-10Mo-1Fe alloy with TWIP effect. Materials Science & Science & Properties, Microstructure and Processing, 2017, 707, 701-707.	5.6	51
32	Twinning and detwinning mechanisms in a BCC Ti Mo-Fe multilayered alloy. IOP Conference Series: Materials Science and Engineering, 2017, 219, 012042.	0.6	4
33	Effect of Additional Boron Amount on Surface Roughness after Lathe Turning in h-BN Dispersed Type 304 Stainless Steels. ISIJ International, 2016, 56, 1031-1037.	1.4	2
34	Study of $\{332\}$ < 113 > twinning in a multilayered Ti-10Mo-xFe (x = 1 â \in "3) alloy by ECCI and EBSD. Science and Technology of Advanced Materials, 2016, 17, 220-228.	6.1	25
35	Deformation microstructural evolution and strain hardening of differently oriented grains in twinning-induced plasticity \hat{l}^2 titanium alloy. Materials Science & Deformation A: Structural Materials: Properties, Microstructure and Processing, 2016, 659, 1-11.	5.6	38
36	Mechanical twinning and dislocation slip multilayered deformation microstructures in β-type Ti–Mo base alloy. Scripta Materialia, 2015, 102, 79-82.	5.2	47

#	Article	IF	CITATIONS
37	Theoretical investigation of effect of alloying elements on phase stability in body-centered cubic Ti-X alloys (X=V, Cr, Fe, Co, Nb, and Mo). Journal of Alloys and Compounds, 2015, 634, 193-199.	5.5	22
38	Improvement of strength–ductility tradeoff in β titanium alloy through pre-strain induced twins combined with brittle I‰ phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 646, 279-287.	5.6	34
39	Microstructures and mechanical properties of Ti5553 alloy processed by high-pressure torsion. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012069.	0.6	3
40	First-principles study of electronic structures and stability of body-centered cubic Ti–Mo alloys by special quasirandom structures. Science and Technology of Advanced Materials, 2014, 15, 035014.	6.1	23
41	Transition of multi-deformation modes in Ti–10Mo alloy with oxygen addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 590, 88-96.	5.6	24
42	Effect of High-Pressure Torsion Process on Precipitation Behavior of & Emp; alpha; Phase in & Emp; beta; Type Ti& Emp; ndash; 15Mo Alloy. Materials Transactions, 2014, 55, 877-884.	1.2	22
43	Effect of Additional Boron Amount on the Surface Roughness after Lathe Turning of h-BN Dispersed Type 304 Stainless Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2014, 100, 1542-1547.	0.4	O
44	Mechanism of twinning-induced plasticity in β-type Ti–15Mo alloy. Scripta Materialia, 2013, 69, 393-396.	5.2	171
45	{332}ã€^113〉 Twinning system selection in a β-type Ti–15Mo–5Zr polycrystalline alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 579, 164-169.	5.6	59
46	Superconductivity in 122 antimonide SrPt ₂ Sb ₂ . Superconductor Science and Technology, 2013, 26, 075001.	3.5	19
47	Machinability Improvement and Its Mechanism in SUS304 Austenitic Stainless Steel by Precipitated Hexagonal Boron Nitride. ISIJ International, 2013, 53, 1841-1849.	1.4	5
48	Quantitative Analysis of Twinning-Induced Plasticity (TWIP) in Beta-Titanium Alloy. , 2013, , 1149-1156.		0
49	Strength evaluation of <i>α</i> and <i>β</i> phases by nanoindentation in Ti–15Mo alloys with Fe and Al addition. Materials Science and Technology, 2012, 28, 342-347.	1.6	14
50	Heterogeneous twin formation and its effect on tensile properties in Ti–Mo based β titanium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 554, 53-60.	5.6	49
51	Enhanced uniform elongation by pre-straining with deformation twinning in high-strength β-titanium alloys with an isothermal ï‰-phase. Philosophical Magazine Letters, 2012, 92, 726-732.	1.2	16
52	Machinability Improvement and Its Mechanism in SUS304 Austenitic Stainless Steel by h-BN Addition. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2012, 98, 358-367.	0.4	7
53	Tensile and High Cycle Fatigue Properties of a Minor Boron-Modified Ti–22Al–11Nb–2Mo–1Fe Alloy. Materials Transactions, 2012, 53, 1138-1147.	1.2	8
54	Optimization of Strength, Ductility and Corrosion Resistance in Ti-Mo Base Alloys by Controlling Mo Equivalency and Bond Order. Materials Transactions, 2011, 52, 1611-1616.	1.2	13

#	Article	IF	CITATIONS
55	Enhancement of uniform elongation in high strength Ti–Mo based alloys by combination of deformation modes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 4569-4578.	5.6	96
56	Effects of α phase precipitation on crevice corrosion and tensile strength in Ti–15Mo alloy. Materials Science & Department of Science & Science & Department of Science &	5.6	30
57	Improvement of room temperature ductility for Mo and Fe modified Ti2AlNb alloy. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2010, 528, 355-362.	5.6	61
58	Effects of Fe addition on tensile deformation mode and crevice corrosion resistance in Ti–15Mo alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2693-2701.	5.6	65
59	Microstructure, tensile deformation mode and crevice corrosion resistance in Ti–10Mo–xFe alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 5499-5506.	5.6	68
60	Evaluation of matrix strength in ultra-fine grained pure Al by nanoindentation. Journal of Materials Research, 2009, 24, 2917-2923.	2.6	14
61	Effect of Fe and Zr additions on ω phase formation in β-type Ti–Mo alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 497, 74-78.	5.6	61
62	"Strategy for Ubiquitous Titanium Alloys― Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 915.	0.4	3
63	Effect of Heat Treatment on the Creep Properties of Ti-22Al-27Nb/TiB Composite. Key Engineering Materials, 2007, 345-346, 545-548.	0.4	1
64	Blended Elemental P/M Synthesis of Titanium Alloys and Titanium Alloy-Based Particulate Composites. Materials Science Forum, 2007, 534-536, 777-780.	0.3	0
65	Creep behavior and tensile properties of Mo- and Fe-added orthorhombic Ti–22Al–11Nb–2Mo–1Fe alloy. Scripta Materialia, 2007, 57, 261-264.	5.2	53
66	High and Low Cycle Fatigue of Orthorhombic Ti-22Al-27Nb Alloy. Materials Science Forum, 2005, 475-479, 589-594.	0.3	0
67	The effect of lamellar morphology on tensile and high-cycle fatigue behavior of orthorhombic Ti-22Al-27Nb alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 2161-2170.	2.2	38
68	Room-temperature tensile and high-cycle-fatigue strength of fine TiB particulate-reinforced Ti-22Al-27Nb composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 2971-2979.	2.2	33
69	Improvement of creep resistance in TiB particle reinforced Ti2AlNb composite particularly above 700 \hat{A}° C. Materials Letters, 2004, 58, 3187-3191.	2.6	9
70	Enhanced mechanical properties of orthorhombic Ti2AlNb-based intermetallic alloy. Metals and Materials International, 2003, 9, 265-272.	3.4	55
71	B2 grain size refinement and its effect on room temperature tensile properties of a Ti–22Al–27Nb orthorhombic intermetallic alloy. Scripta Materialia, 2003, 48, 629-634.	5.2	93
72	The role of TiB particulate reinforcement in Ti2AlNb based composite under high cycle fatigue. Scripta Materialia, 2003, 49, 897-902.	5.2	18

#	Article	IF	Citations
73	Blended elemental P/M synthesis and property evaluation of Ti-1100 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 352, 85-92.	5.6	39
74	Property Enhancement of Orthorhombic Ti ₂ AlNb-Based Intermetallic Alloys. Materials Science Forum, 2003, 426-432, 1715-1720.	0.3	6
75	Mechanical properties of TiB particulate reinforced Ti _{2A1Nb intermetallics produced by prealloyed powder metallurgy method. International Journal of Materials and Product Technology, 2001, 16, 103.}	0.2	1
76	Tensile properties of Tungsten-modified orthorhombic Ti-22Al-20Nb-2W alloy. Scripta Materialia, 2001, 44, 671-676.	5.2	21
77	Reinforcing effect of in situ grown TiB fibers on Ti-22Al-11Nb-4Mo alloy. Scripta Materialia, 2000, 43, 573-578.	5.2	19
78	Improvement of Room and High Temperature Mechanical Properties of a Ti ₂ AlNb-based alloy by the Microstructural and Compositional Modifications. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2000, 64, 1033-1040.	0.4	0
79	Blended Elemental P/M Synthesis and Property Evaluation of an Orthorhombic Ti-22Al-27Nb Alloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1999, 63, 1269-1276.	0.4	1
80	Effect of a Matrix Microstructure on the High Cycle Fatigue Properties of TiB Particulate Reinforced Ti ₃ Al-Nb Matrix Composites. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1999, 63, 383-390.	0.4	0
81	Relationship between fracture toughness and microstructure of Ti–6Al–2Sn–4Zr–2Mo alloy reinforced with TiB particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 263, 319-325.	5.6	28
82	Modulated microstructure in Ti-22Al-11 Nb-4Mo alloy. Scripta Materialia, 1999, 40, 471-476.	5.2	5
83	MA Synthesis of TiC-Reinforced Titanium Composites and Particle Size Dependence of Tensile Properties Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1999, 46, 484-488.	0.2	6
84	Blended elemental P/M synthesis of Ti-6Al-1.7Fe-0.1Si alloy with improved high cycle fatigue strength. Scripta Materialia, 1998, 39, 1185-1190.	5.2	16
85	Microstructural Control and Improvement of Fatigue Properties in Ti ₃ Al-Nb Based Alloys Produced by Blended Elemental Powder Metallurgy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1998, 62, 621-628.	0.4	0
86	Fracture Toughness and Microstructure in TiB Particulate-reinforced Ti-6Al-2Sn-4Zr-2Mo Composites. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1998, 84, 452-457.	0.4	2
87	Synthesis and Property Evaluation of P/M Ti-6Al-2Sn-4Zr-2Mo/TiB Particulate Composites. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1997, 83, 821-826.	0.4	3
88	Processing Condition and Mechanical Properties of Blended Elemental P/M Particulate-reinforced Ti3Al Intermetallics Matrix Composite Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1996, 43, 433-437.	0.2	1
89	Effects of magnetic fields on martensitic transformation and serration of austenitic Feî—¸Ni and Feî—¸Crî—¸Ni steels at 4 K. Fusion Engineering and Design, 1993, 20, 445-450.	1.9	8
90	Mechanical Properties of Particulate Reinforced Titanium-based Metal Matrix Composites Produced by the Blended Elemental P/M Route ISIJ International, 1992, 32, 909-916.	1.4	20

SATOSHI EMURA

#	Article	IF	CITATIONS
91	Effect of Swirly Segregation of Mo on Omega Phase Precipitation Behavior and Tensile Property of Ti-12Mo Alloy. Key Engineering Materials, 0, 551, 180-185.	0.4	10