Roberto M Vanacore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3777414/publications.pdf

Version: 2024-02-01

28 papers 2,006 citations

394421 19 h-index 26 g-index

28 all docs

28 docs citations

times ranked

28

 $\begin{array}{c} 2387 \\ \text{citing authors} \end{array}$

#	Article	IF	CITATIONS
1	Lysyl Oxidaseâ€like 2 Targets Specific Lysine residues within the 7S dodecamer of Collagen IV. FASEB Journal, 2021, 35, .	0.5	O
2	EGF receptor–mediated FUS phosphorylation promotes its nuclear translocation and fibrotic signaling. Journal of Cell Biology, 2020, 219, .	5.2	12
3	Quantitative proteomic profiling of extracellular matrix and site-specific collagen post-translational modifications in an in vitro model of lung fibrosis. Matrix Biology Plus, 2019, 1, 100005.	3.5	55
4	The Extracellular Matrix Receptor Discoidin Domain Receptor 1 Regulates Collagen Transcription by Translocating to the Nucleus. Journal of the American Society of Nephrology: JASN, 2019, 30, 1605-1624.	6.1	38
5	Loss of function of Colgalt1 disrupts collagen post-translational modification and causes musculoskeletal defects. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	13
6	Building collagen IV smart scaffolds on the outside of cells. Protein Science, 2017, 26, 2151-2161.	7.6	61
7	Proteolytic processing of lysyl oxidase–like-2 in the extracellular matrix is required for crosslinking of basement membrane collagen IV. Journal of Biological Chemistry, 2017, 292, 16970-16982.	3.4	39
8	Extracellular chloride signals collagen IV network assembly during basement membrane formation. Journal of Cell Biology, 2016, 213, 479-494.	5.2	56
9	Lysyl Oxidase-like-2 Cross-links Collagen IV of Glomerular Basement Membrane. Journal of Biological Chemistry, 2016, 291, 25999-26012.	3.4	61
10	Aquaporin 11 variant associates with kidney disease in type 2 diabetic patients. American Journal of Physiology - Renal Physiology, 2016, 310, F416-F425.	2.7	15
11	Comprehensive Characterization of Glycosylation and Hydroxylation of Basement Membrane Collagen IV by High-Resolution Mass Spectrometry. Journal of Proteome Research, 2016, 15, 245-258.	3.7	64
12	Supramolecular Organization of the α121-α565 Collagen IV Network. Journal of Biological Chemistry, 2014, 289, 25601-25610.	3.4	18
13	A unique covalent bond in basement membrane is a primordial innovation for tissue evolution. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 331-336.	7.1	138
14	Bromine Is an Essential Trace Element for Assembly of Collagen IV Scaffolds in Tissue Development and Architecture. Cell, 2014, 157, 1380-1392.	28.9	299
15	Integrin-mediated type II TGF-Î ² receptor tyrosine dephosphorylation controls SMAD-dependent profibrotic signaling. Journal of Clinical Investigation, 2014, 124, 3295-3310.	8.2	56
16	Evolutionary Origin of the Sulfilimine Chemical Bond in Basement Membranes. FASEB Journal, 2013, 27, 790.19.	0.5	0
17	Peroxidasin forms sulfilimine chemical bonds using hypohalous acids in tissue genesis. Nature Chemical Biology, 2012, 8, 784-790.	8.0	207
18	Upregulated Expression of Integrin $\hat{l}\pm 1$ in Mesangial Cells and Integrin $\hat{l}\pm 3$ and Vimentin in Podocytes of Col4a3-Null (Alport) Mice. PLoS ONE, 2012, 7, e50745.	2.5	17

#	ARTICLE	IF	CITATION
19	Goodpasture $\hat{E}^{1/4}$ s disease: molecular architecture of the autoantigen provides clues to etiology and pathogenesis. Current Opinion in Nephrology and Hypertension, 2011, 20, 290-296.	2.0	19
20	Sulphilimine/Sulfilimine cross-links in Goodpasture's disease. Clinical and Experimental Immunology, 2011, 164, 4-6.	2.6	13
21	Molecular Architecture of the Goodpasture Autoantigen in Anti-GBM Nephritis. New England Journal of Medicine, 2010, 363, 343-354.	27.0	298
22	A Sulfilimine Bond Identified in Collagen IV. Science, 2009, 325, 1230-1234.	12.6	207
23	A Role for Collagen IV Cross-links in Conferring Immune Privilege to the Goodpasture Autoantigen. Journal of Biological Chemistry, 2008, 283, 22737-22748.	3.4	34
24	Identification of S-Hydroxylysyl-methionine as the Covalent Cross-link of the Noncollagenous (NC1) Hexamer of the $\hat{l}\pm1\hat{l}\pm2$ Collagen IV Network. Journal of Biological Chemistry, 2005, 280, 29300-29310.	3.4	49
25	The α1.α2 Network of Collagen IV. Journal of Biological Chemistry, 2004, 279, 44723-44730.	3.4	47
26	Role for Copper in Transient Oxidation and Nuclear Translocation of MTF-1, but Not of NF-κB, by the Heme–Hemopexin Transport System. Antioxidants and Redox Signaling, 2000, 2, 739-752.	5.4	33
27	Cellular Protection Mechanisms against Extracellular Heme. Journal of Biological Chemistry, 1999, 274, 638-648.	3.4	91
28	Intestinal alkaline phosphatase of the fishCyprinus carpio: Regional distribution and membrane association. The Journal of Experimental Zoology, 1997, 279, 347-355.	1.4	66