
Chris Ojiewo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3777368/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Farmers' preferences and willingness to pay for traits of sorghum varieties: Informing product development and breeding programs in Tanzania. Journal of Crop Improvement, 2023, 37, 253-272.	1.7	5
2	Gender gaps in sorghum productivity: evidence from male- and female-managed plots in Uganda. Development in Practice, 2023, 33, 375-386.	1.3	0
3	Response of chickpea to varying moisture stress conditions in Ethiopia. , 2022, 5, .		5
4	Mapping out market drivers of improved variety seed use: the case of sorghum in Tanzania. Heliyon, 2022, 8, e08715.	3.2	5
5	Sorghum production in Nigeria: opportunities, constraints, and recommendations. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2022, 72, 660-672.	0.6	6
6	Genetic diversity and population structure of groundnut (Arachis hypogaea L.) accessions using phenotypic traits and SSR markers: implications for rust resistance breeding. Genetic Resources and Crop Evolution, 2021, 68, 581-604.	1.6	13
7	Enhancing Chickpea Production and Productivity Through Stakeholders' Innovation Platform Approach in Ethiopia. , 2021, , 97-111.		6
8	Innovation Platform for Catalyzing Access to Seed of Improved Legume Varieties to Smallholder Farmers. , 2021, , 199-205.		0
9	Understanding Farmers' Trait Preferences for Dual-Purpose Crops to Improve Mixed Crop–Livestock Systems in Zimbabwe. Sustainability, 2021, 13, 5678.	3.2	7
10	Assessment of sorghum production constraints and farmer preferences for sorghum variety in Uganda: implications for nutritional quality breeding. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2021, 71, 620-632.	0.6	6
11	Combining ability and gene action controlling rust resistance in groundnut (Arachis hypogaea L.). Scientific Reports, 2021, 11, 16513.	3.3	5
12	Genetic fingerprinting and aflatoxin production of Aspergillus section Flavi associated with groundnut in eastern Ethiopia. BMC Microbiology, 2021, 21, 239.	3.3	4
13	A Cross-Case Analysis of Innovation Platform Experiences in Seven Countries in West and East Africa and South Asia. , 2021, , 185-197.		Ο
14	General Context of Smallholder Farmers' Access to Seed of Improved Legume Varieties and Innovation Platform Perspectives. , 2021, , 1-7.		0
15	Technical efficiency and technology gaps of sorghum plots in Uganda: A gendered stochastic metafrontier analysis. Heliyon, 2021, 7, e05845.	3.2	10
16	What Does Gender Yield Gap Tell Us about Smallholder Farming in Developing Countries?. Sustainability, 2021, 13, 77.	3.2	9
17	Delineating investment opportunities for stakeholders in sorghum seed systems: a logit model perspective. Agriculture and Food Security, 2021, 10, .	4.2	2
18	Analyzing Pathways of Nurturing Informal Seed Production into Formal Private Ventures for Sustainable Seed Delivery and Crop Productivity: Experiences from Ethiopia. Sustainability, 2020, 12, 6828.	3.2	4

CHRIS OJIEWO

#	Article	IF	CITATIONS
19	Factors Influencing Preferences and Adoption of Improved Groundnut Varieties among Farmers in Tanzania. Agronomy, 2020, 10, 1271.	3.0	9
20	Grain legume seed systems for smallholder farmers: Perspectives on successful innovations. Outlook on Agriculture, 2020, 49, 286-292.	3.4	12
21	Estimating and Decomposing Groundnut Gender Yield Gap: Evidence from Rural Farming Households in Northern Nigeria. Sustainability, 2020, 12, 8923.	3.2	5
22	Advances in Crop Improvement and Delivery Research for Nutritional Quality and Health Benefits of Groundnut (Arachis hypogaea L.). Frontiers in Plant Science, 2020, 11, 29.	3.6	34
23	Integrating genomics for chickpea improvement: achievements and opportunities. Theoretical and Applied Genetics, 2020, 133, 1703-1720.	3.6	82
24	Legume seed production for sustainable seed supply and crop productivity: case of groundnut in Tanzania and Uganda. Journal of Crop Improvement, 2020, 34, 518-539.	1.7	11
25	Aggravated food insecurity in COVID-19 era: quality seed flow of adapted and nutrient-dense varieties is central to the recovery equation in the drylands. Technium: Romanian Journal of Applied Sciences and Technology, 2020, 2, 62-65.	0.3	0
26	A probit Analysis of Determinants of Adoption of Improved Sorghum Technologies Among Farmers in Tanzania. Journal of Agricultural Science, 2020, 13, 73.	0.2	4
27	Analysis of Adoption of Improved Groundnut Varieties in the Tropical Legume Project (TL III) States in Nigeria. Agricultural Sciences, 2020, 11, 143-156.	0.3	2
28	Genomics, genetics and breeding of tropical legumes for better livelihoods of smallholder farmers. Plant Breeding, 2019, 138, 487-499.	1.9	28
29	Marketâ€led options to scale up legume seeds in developing countries: Experiences from the Tropical Legumes Project. Plant Breeding, 2019, 138, 474-486.	1.9	13
30	A decade of Tropical Legumes projects: Development and adoption of improved varieties, creation of marketâ€demand to benefit smallholder farmers and empowerment of national programmes in sub‧aharan Africa and South Asia. Plant Breeding, 2019, 138, 379-388.	1.9	22
31	Integrated breeding approaches for improving drought and heat adaptation in chickpea (<i>Cicer) Tj ETQq1 1 0.7</i>	784314 rg 1.9	BT_/Overloci
32	Genetics, genomics and breeding of groundnut (Arachis hypogaea L.). Plant Breeding, 2019, 138, 425-444.	1.9	38
33	Pigeonpea improvement: An amalgam of breeding and genomic research. Plant Breeding, 2019, 138, 445-454.	1.9	25
34	Accelerating genetic gains in legumes for the development of prosperous smallholder agriculture: integrating genomics, phenotyping, systems modelling and agronomy. Journal of Experimental Botany, 2018, 69, 3293-3312.	4.8	87
35	Breeding Progress for Grain Yield and Yield Related Characters of Kabuli Chickpea (Cicer arietinum L.) in Ethiopia Using Regression Analysis. Journal of Agricultural Science, 2018, 10, 195.	0.2	4

 $_{36}$ Incidence and within field dispersion pattern of pod borer, Helicoverpa armigera (Lepidoptera:) Tj ETQq0 0 0 rgBT /Qverlock 10 Tf 50 62

CHRIS OJIEWO

#	Article	IF	CITATIONS
37	Genotype by environment interaction on yield stability of desi type chickpea (Cicer arietinum L.) at major chickpea producing areas of Ethiopia. Australian Journal of Crop Science, 2017, 11, 212-219.	0.3	9
38	The Genotypic and Phenotypic Basis of Chickpea (Cicer arietinum L.) Cultivars for Irrigation-Based Production in Ethiopia. Journal of Agricultural Science, 2017, 9, 229.	0.2	5
39	Heterosis for Nitrogen Fixation and Seed Yield and Yield Components in Chickpea (Cicer arietinum L.). International Journal of Agricultural Sustainability, 2017, 4, 50-57.	0.2	1
40	Correlation and Path Coefficient Analysis for Various Quantitative Traits in Desi Chickpea Genotypes under Rainfed Conditions in Ethiopia. Journal of Agricultural Science, 2016, 8, 112.	0.2	5
41	Current status of wilt/root rot diseases in major chickpea growing areas of Ethiopia. Archives of Phytopathology and Plant Protection, 2016, 49, 222-238.	1.3	11
42	The Role of Vegetables and Legumes in Assuring Food, Nutrition, and Income Security for Vulnerable Groups in Subâ€Saharan Africa. World Medical and Health Policy, 2015, 7, 187-210.	1.6	28
43	African Nightshades and African Eggplants: Taxonomy, Crop Management, Utilization, and Phytonutrients. ACS Symposium Series, 2013, , 137-165.	0.5	10
44	Vegetable gardens and their impact on the attainment of the Millennium Development Goals. Biological Agriculture and Horticulture, 2012, 28, 71-85.	1.0	37
45	Mapping Out Market Drivers of Improved Variety Seed Use: The Case of Sorghum in Tanzania. SSRN Electronic Journal, 0, , .	0.4	0
46	Estimating the potential to close yield gaps through increased efficiency of chickpea production in Ethiopia. Food Security, 0, , 1.	5.3	2