Jier Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3777205/publications.pdf

Version: 2024-02-01

147801 123424 4,429 62 31 61 h-index citations g-index papers 64 64 64 6237 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	2D Covalent Organic Frameworks as Intrinsic Photocatalysts for Visible Light-Driven CO ₂ Reduction. Journal of the American Chemical Society, 2018, 140, 14614-14618.	13.7	461
2	Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nature Communications, 2019, 10, 982.	12.8	311
3	Unveiling Charge-Separation Dynamics in CdS/Metal–Organic Framework Composites for Enhanced Photocatalysis. ACS Catalysis, 2018, 8, 11615-11621.	11.2	262
4	Mixed-Node Metal–Organic Frameworks as Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Energy Letters, 2018, 3, 2520-2526.	17.4	252
5	Photodriven Charge Separation Dynamics in CdSe/ZnS Core/Shell Quantum Dot/Cobaloxime Hybrid for Efficient Hydrogen Production. Journal of the American Chemical Society, 2012, 134, 16472-16475.	13.7	249
6	Photoinduced Ultrafast Electron Transfer from CdSe Quantum Dots to Re-bipyridyl Complexes. Journal of the American Chemical Society, 2008, 130, 5632-5633.	13.7	231
7	Multiple Exciton Dissociation in CdSe Quantum Dots by Ultrafast Electron Transfer to Adsorbed Methylene Blue. Journal of the American Chemical Society, 2010, 132, 4858-4864.	13.7	212
8	Donor–Acceptor Fluorophores for Energy-Transfer-Mediated Photocatalysis. Journal of the American Chemical Society, 2018, 140, 13719-13725.	13.7	174
9	Exciton Dissociation in CdSe Quantum Dots by Hole Transfer to Phenothiazine. Journal of Physical Chemistry C, 2008, 112, 19734-19738.	3.1	164
10	Distribution and Valence State of Ru Species on CeO ₂ Supports: Support Shape Effect and Its Influence on CO Oxidation. ACS Catalysis, 2019, 9, 11088-11103.	11.2	159
11	Exceptionally Long-Lived Charge Separated State in Zeolitic Imidazolate Framework: Implication for Photocatalytic Applications. Journal of the American Chemical Society, 2016, 138, 8072-8075.	13.7	155
12	Size Engineering of Metal–Organic Framework MIL-101(Cr)–Ag Hybrids for Photocatalytic CO ₂ Reduction. ACS Catalysis, 2019, 9, 8464-8470.	11.2	149
13	Dynamic evolution and reversibility of single-atom Ni(II) active site in 1T-MoS2 electrocatalysts for hydrogen evolution. Nature Communications, 2020, 11, 4114.	12.8	112
14	Ultrafast Hole Trapping and Relaxation Dynamics in p-Type CuS Nanodisks. Journal of Physical Chemistry Letters, 2015, 6, 2671-2675.	4.6	97
15	Comparison of Electron-Transfer Dynamics from Coumarin 343 to TiO2, SnO2, and ZnO Nanocrystalline Thin Films: Role of Interface-Bound Charge-Separated Pairs. Journal of Physical Chemistry C, 2010, 114, 6560-6566.	3.1	89
16	Highly Efficient Ultrafast Electron Injection from the Singlet MLCT Excited State of Copper(I) Diimine Complexes to TiO ₂ Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 12711-12715.	13.8	85
17	Atomic Insight into the W-Doping Effect on Carrier Dynamics and Photoelectrochemical Properties of BiVO ₄ Photoanodes. Journal of Physical Chemistry C, 2016, 120, 1421-1427.	3.1	81
18	Direct Evidence of Photoinduced Charge Transport Mechanism in 2D Conductive Metal Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 21050-21058.	13.7	76

#	Article	IF	Citations
19	Conjugation- and Aggregation-Directed Design of Covalent Organic Frameworks as White-Light-Emitting Diodes. Journal of the American Chemical Society, 2021, 143, 1061-1068.	13.7	75
20	High-index faceted CuFeS ₂ nanosheets with enhanced behavior for boosting hydrogen evolution reaction. Nanoscale, 2017, 9, 9230-9237.	5.6	70
21	Real-Time Visualization of Active Species in a Single-Site Metal–Organic Framework Photocatalyst. ACS Energy Letters, 2018, 3, 532-539.	17.4	69
22	Photoactive Zeolitic Imidazolate Framework as Intrinsic Heterogeneous Catalysts for Light-Driven Hydrogen Generation. ACS Energy Letters, 2017, 2, 75-80.	17.4	64
23	Mechanistic Probes of Zeolitic Imidazolate Framework for Photocatalytic Application. ACS Catalysis, 2017, 7, 8446-8453.	11.2	56
24	Elucidating Charge Separation Dynamics in a Hybrid Metal–Organic Framework Photocatalyst for Light-Driven H ₂ Evolution. Journal of Physical Chemistry C, 2018, 122, 3305-3311.	3.1	49
25	Carbon Quantum Dot/TiO ₂ Nanohybrids: Efficient Photocatalysts for Hydrogen Generation via Intimate Contact and Efficient Charge Separation. ACS Applied Nano Materials, 2019, 2, 1027-1032.	5.0	47
26	Comparison of Electron Injection Dynamics from Rhodamine B to In ₂ O ₃ , SnO ₂ , and ZnO Nanocrystalline Thin Films. Journal of Physical Chemistry C, 2008, 112, 5203-5212.	3.1	44
27	<i>In Situ</i> Activated Co _{3–<i>x</i>} Ni _{<i>x</i>} O ₄ as a Highly Active and Ultrastable Electrocatalyst for Hydrogen Generation. ACS Catalysis, 2021, 11, 8174-8182.	11.2	43
28	Tuning Internal Strain in Metal–Organic Frameworks via Vapor Phase Infiltration for CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 4572-4580.	13.8	42
29	Domain structure for an amorphous iridium-oxide water-oxidation catalyst characterized by X-ray pair distribution function analysis. Physical Chemistry Chemical Physics, 2014, 16, 1814-1819.	2.8	39
30	Asynchronous Photoexcited Electronic and Structural Relaxation in Lead-Free Perovskites. Journal of the American Chemical Society, 2019, 141, 13074-13080.	13.7	39
31	Symmetry-Guided Synthesis of <i>N,N′</i> -Bicarbazole and Porphyrin-Based Mixed-Ligand Metal–Organic Frameworks: Light Harvesting and Energy Transfer. Journal of the American Chemical Society, 2021, 143, 20411-20418.	13.7	37
32	Direct Observation of Node-to-Node Communication in Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society, 2018, 140, 11573-11576.	13.7	32
33	The effect of Mo doping on the charge separation dynamics and photocurrent performance of BiVO ₄ photoanodes. Physical Chemistry Chemical Physics, 2016, 18, 32820-32825.	2.8	31
34	Iron(<scp>iii</scp>)-bipyridine incorporated metalâ€"organic frameworks for photocatalytic reduction of CO ₂ with improved performance. Dalton Transactions, 2021, 50, 384-390.	3.3	30
35	Interrogating the photogenerated Ir(iv) state of a water oxidation catalyst using ultrafast optical and X-ray absorption spectroscopy. Chemical Science, 2013, 4, 3863.	7.4	29
36	Electron shuttle in the MOF derived TiO ₂ /CuO heterojunction boosts light driven hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 6180-6187.	10.3	28

#	Article	lF	CITATIONS
37	Exceptionally Robust CulnS ₂ /ZnS Nanoparticles as Single Component Photocatalysts for H ₂ Evolution. Journal of Physical Chemistry C, 2017, 121, 19031-19035.	3.1	27
38	Manipulating Coordination Structures of Mixed-Valence Copper Single Atoms on 1T-MoS ₂ for Efficient Hydrogen Evolution. ACS Catalysis, 2022, 12, 7687-7695.	11.2	26
39	Unravelling a long-lived ligand-to-metal cluster charge transfer state in Ce–TCPP metal organic frameworks. Chemical Communications, 2020, 56, 13971-13974.	4.1	20
40	A strong steric hindrance effect on ground state, excited state, and charge separated state properties of a Cu ^I -diimine complex captured by X-ray transient absorption spectroscopy. Dalton Transactions, 2014, 43, 17615-17623.	3.3	19
41	Unravelling the Correlation of Electronic Structure and Carrier Dynamics in CulnS2 Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 974-980.	3.1	18
42	Tuning Internal Strain in Metal–Organic Frameworks via Vapor Phase Infiltration for CO 2 Reduction. Angewandte Chemie, 2020, 132, 4602-4610.	2.0	16
43	Site-Selective Probes of Mixed-Node Metal Organic Frameworks for Photocatalytic Hydrogen Generation. Journal of Physical Chemistry C, 2020, 124, 1405-1412.	3.1	16
44	Tuning Photoexcited Charge Transfer in Imine-Linked Two-Dimensional Covalent Organic Frameworks. Journal of Physical Chemistry Letters, 2022, 13, 1398-1405.	4.6	16
45	Implicating the contributions of surface and bulk states on carrier trapping and photocurrent performance of BiVO ₄ photoanodes. Physical Chemistry Chemical Physics, 2017, 19, 6831-6837.	2.8	15
46	Conformational States of Cytochrome P450 Oxidoreductase Evaluated by $\tilde{\text{FA}}$ rster Resonance Energy Transfer Using Ultrafast Transient Absorption Spectroscopy. Biochemistry, 2016, 55, 5973-5976.	2.5	11
47	Photoinduced interfacial charge separation dynamics in zeolitic imidazolate framework. Physical Chemistry Chemical Physics, 2018, 20, 14884-14888.	2.8	11
48	Zeolitic imidazolate frameworks as intrinsic light harvesting and charge separation materials for photocatalysis. Journal of Chemical Physics, 2021, 154, 240901.	3.0	11
49	2D Covalent Organic Frameworks with an Incorporated Manganese Complex for Light Driven Carbon Dioxide Reduction. ChemPhotoChem, 2021, 5, 1119-1123.	3.0	10
50	Light-driven hydrogen production from aqueous solutions based on a new Dubois-type nickel catalyst. Physical Chemistry Chemical Physics, 2017, 19, 7471-7475.	2.8	9
51	Postsynthetic Treatment of ZIF-67 with 5-Methyltetrazole: Evolution from Pseudo-T _d to Pseudo-O _h Symmetry and Collapse of Magnetic Ordering. Inorganic Chemistry, 2022, 61, 6056-6062.	4.0	9
52	Selective Excited-State Dynamics in a Unique Set of Rationally Designed Ni Porphyrins. Journal of Physical Chemistry C, 2019, 123, 17994-18000.	3.1	8
53	Composition effect on the carrier dynamics and catalytic performance of CulnS2/ZnS quantum dots for light driven hydrogen generation. Journal of Chemical Physics, 2019, 151, 214705.	3.0	8
54	The direct observation of charge separation dynamics in CdSe quantum dots/cobaloxime hybrids. Physical Chemistry Chemical Physics, 2016, 18, 4300-4303.	2.8	7

#	Article	IF	CITATIONS
55	Direct Observation of Photoinduced Charge Separation in Ruthenium Complex/Ni(OH)2 Nanoparticle Hybrid. Scientific Reports, 2016, 5, 18505.	3.3	6
56	Distance dependent energy transfer dynamics from a molecular donor to a zeolitic imidazolate framework acceptor. Physical Chemistry Chemical Physics, 2020, 22, 25445-25449.	2.8	6
57	Enhanced light harvesting ability in zeolitic imidazolate frameworks through energy transfer from CdS nanowires. Physical Chemistry Chemical Physics, 2020, 22, 3849-3854.	2.8	6
58	Unraveling the Intermediate Species of Co ₃ O ₄ Hollow Spheres for CO ₂ Photoreduction by In Situ X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 6215-6220.	3.1	5
59	Impact of π-Conjugation Length on the Excited-State Dynamics of Star-Shaped Carbazole-π-Triazine Organic Chromophores. Journal of Physical Chemistry A, 2022, 126, 3291-3300.	2.5	2
60	Synchrotron X-ray-induced Synthesis of Copper Hydroxide Nitrate Nanoplates on Cu Thin Films in an Ambient Atmosphere. ACS Applied Materials & Samp; Interfaces, 2022, 14, 23342-23347.	8.0	1
61	Photoinduced Charge Transport in Conductive Metal Organic Frameworks. , 2021, , .		0
62	Synchrotron Xâ€Rayâ€Driven Nitrogen Reduction on an AgCu Thin Film. Small, 0, , 2202720.	10.0	O