
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3777176/publications.pdf Version: 2024-02-01

RUDEL TANC

#	Article	IF	CITATIONS
1	Carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing. Carbohydrate Polymers, 2015, 125, 189-199.	10.2	228
2	Block copolymer micelles with acid-labile ortho ester side-chains: Synthesis, characterization, and enhanced drug delivery to human glioma cells. Journal of Controlled Release, 2011, 151, 18-27.	9.9	190
3	Ag Nanoparticles Cluster with pHâ€Triggered Reassembly in Targeting Antimicrobial Applications. Advanced Functional Materials, 2020, 30, 2000511.	14.9	98
4	Hypromellose succinate-crosslinked chitosan hydrogel films for potential wound dressing. International Journal of Biological Macromolecules, 2016, 91, 85-91.	7.5	74
5	Oxygen-producing catalase-based prodrug nanoparticles overcoming resistance in hypoxia-mediated chemo-photodynamic therapy. Acta Biomaterialia, 2020, 112, 234-249.	8.3	69
6	Well-defined block copolymers for gene delivery to dendritic cells: Probing the effect of polycation chain-length. Journal of Controlled Release, 2010, 142, 229-237.	9.9	60
7	Amphiphilic Block Copolymers Bearing Ortho Ester Side hains: pHâ€Đependent Hydrolysis and Selfâ€Assembly in Water. Macromolecular Bioscience, 2010, 10, 192-201.	4.1	60
8	Stepwise targeted drug delivery to liver cancer cells for enhanced therapeutic efficacy by galactose-grafted, ultra-pH-sensitive micelles. Acta Biomaterialia, 2017, 51, 363-373.	8.3	59
9	Synthesis and characterization of new poly(ortho ester amidine) copolymers for non-viral gene delivery. Polymer, 2011, 52, 921-932.	3.8	51
10	Surface-Eroding Poly(ortho ester amides) for Highly Efficient Oral Chemotherapy. ACS Applied Materials & Interfaces, 2015, 7, 10436-10445.	8.0	48
11	Hybrid pH-sensitive nanogels surface-functionalized with collagenase for enhanced tumor penetration. Journal of Colloid and Interface Science, 2018, 525, 269-281.	9.4	48
12	3-Carboxyphenylboronic acid-modified carboxymethyl chitosan nanoparticles for improved tumor targeting and inhibitory. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 113, 168-177.	4.3	47
13	Poly(ortho ester amides): Acid-Labile Temperature-Responsive Copolymers for Potential Biomedical Applications. Biomacromolecules, 2009, 10, 722-727.	5.4	45
14	Acid–degradable carboxymethyl chitosan nanogels via an ortho ester linkage mediated improved penetration and growth inhibition of 3-D tumor spheroids in vitro. Materials Science and Engineering C, 2017, 78, 246-257.	7.3	45
15	pH/redox dual-sensitive platinum (IV)-based micelles with greatly enhanced antitumor effect for combination chemotherapy. Journal of Colloid and Interface Science, 2019, 541, 30-41.	9.4	44
16	Co-delivery of DOX and PDTC by pH-sensitive nanoparticles to overcome multidrug resistance in breast cancer. Colloids and Surfaces B: Biointerfaces, 2019, 181, 185-197.	5.0	42
17	Surface-fluorinated and pH-sensitive carboxymethyl chitosan nanoparticles to overcome biological barriers for improved drug delivery in vivo. Carbohydrate Polymers, 2019, 208, 59-69.	10.2	41
18	Low Molecular Weight PEIâ€Based Vectors via Acid‣abile Ortho Ester Linkage for Improved Gene Delivery. Macromolecular Bioscience, 2016, 16, 1175-1187.	4.1	39

#	Article	IF	CITATIONS
19	Folic acid-modified soy protein nanoparticles for enhanced targeting and inhibitory. Materials Science and Engineering C, 2017, 71, 298-307.	7.3	38
20	pH-triggered chitosan nanogels via an ortho ester-based linkage for efficient chemotherapy. Acta Biomaterialia, 2017, 60, 232-243.	8.3	37
21	pH-sensitive carboxymethyl chitosan hydrogels via acid-labile ortho ester linkage for potential biomedical applications. Carbohydrate Polymers, 2017, 178, 166-179.	10.2	37
22	Bromelain-immobilized and lactobionic acid-modified chitosan nanoparticles for enhanced drug penetration in tumor tissues. International Journal of Biological Macromolecules, 2018, 115, 129-142.	7.5	37
23	Indomethacin-grafted and pH-sensitive dextran micelles for overcoming inflammation-mediated multidrug resistance in breast cancer. Carbohydrate Polymers, 2020, 237, 116139.	10.2	37
24	Effective treatment of drug-resistant lung cancer via a nanogel capable of reactivating cisplatin and enhancing early apoptosis. Biomaterials, 2020, 257, 120252.	11.4	36
25	Hyaluronic acid nanogels prepared via ortho ester linkages show pH-triggered behavior, enhanced penetration and antitumor efficacy in 3-D tumor spheroids. Journal of Colloid and Interface Science, 2017, 504, 25-38.	9.4	35
26	pH-sensitive carboxymethyl chitosan hydrogels via acid-labile ortho ester linkage as an implantable drug delivery system. Carbohydrate Polymers, 2019, 225, 115237.	10.2	35
27	Carboxymethyl chitosan-based nanogels via acid-labile ortho ester linkages mediated enhanced drug delivery. International Journal of Biological Macromolecules, 2019, 129, 477-487.	7.5	34
28	pH-sensitive bromelain nanoparticles by ortho ester crosslinkage for enhanced doxorubicin penetration in solid tumor. Materials Science and Engineering C, 2020, 113, 111004.	7.3	33
29	Pluronic micelles with suppressing doxorubicin efflux and detoxification for efficiently reversing breast cancer resistance. European Journal of Pharmaceutical Sciences, 2020, 146, 105275.	4.0	32
30	Phenylboronic acid-decorated gelatin nanoparticles for enhanced tumor targeting and penetration. Nanotechnology, 2016, 27, 385101.	2.6	30
31	pH-sensitive pluronic micelles combined with oxidative stress amplification for enhancing multidrug resistance breast cancer therapy. Journal of Colloid and Interface Science, 2020, 565, 254-269.	9.4	30
32	TPGS-functionalized and ortho ester-crosslinked dextran nanogels for enhanced cytotoxicity on multidrug resistant tumor cells. Carbohydrate Polymers, 2018, 198, 142-154.	10.2	26
33	TPGS-grafted and acid-responsive soy protein nanogels for efficient intracellular drug release, accumulation, penetration in 3D tumor spheroids of drug-resistant cancer cells. Materials Science and Engineering C, 2019, 102, 863-875.	7.3	26
34	Tunable dynamic fluorinated poly(orthoester)-based drug carriers for greatly enhanced chemotherapeutic efficacy. Polymer Chemistry, 2017, 8, 2063-2073.	3.9	25
35	pH-sensitive nanogels with ortho ester linkages prepared via thiol-ene click chemistry for efficient intracellular drug release. Journal of Colloid and Interface Science, 2017, 508, 282-290.	9.4	24
36	Self-Assembled Indomethacin Dimer Nanoparticles Loaded with Doxorubicin for Combination Therapy in Resistant Breast Cancer. ACS Applied Materials & Interfaces, 2019, 11, 28597-28609.	8.0	24

#	Article	IF	CITATIONS
37	Active-targeting and acid-sensitive pluronic prodrug micelles for efficiently overcoming MDR in breast cancer. Journal of Materials Chemistry B, 2020, 8, 2726-2737.	5.8	24
38	Diblock Copolymers of Polyethylene Glycol and a Polymethacrylamide with Sideâ€Chains Containing Twin <i>Ortho</i> Ester Rings: Synthesis, Characterization, and Evaluation as Potential pHâ€Responsive Micelles. Macromolecular Bioscience, 2015, 15, 385-394.	4.1	23
39	pH-sensitive poly(ortho ester urethanes) copolymers with controlled degradation kinetic: Synthesis, characterization, and in vitro evaluation as drug carriers. European Polymer Journal, 2017, 95, 275-288.	5.4	23
40	pHâ€Responsive Micelles Based on Amphiphilic Block Copolymers Bearing Ortho Ester Pendants as Potential Drug Carriers. Macromolecular Chemistry and Physics, 2011, 212, 1185-1192.	2.2	22
41	Acid-degradable poly(ortho ester urethanes) copolymers for potential drug carriers: Preparation, characterization, inAvitro and inAvivo evaluation. Polymer, 2017, 114, 1-14.	3.8	22
42	Dynamic, ultra-pH-sensitive graft copolymer micelles mediated rapid, complete destruction of 3-D tumor spheroids inÂvitro. Polymer, 2017, 111, 192-203.	3.8	22
43	pH-sensitive and pluronic-modified pullulan nanogels for greatly improved antitumor in vivo. International Journal of Biological Macromolecules, 2019, 139, 277-289.	7.5	22
44	PEGylated block copolymers containing tertiary amine side-chains cleavable via acid-labile ortho ester linkages for pH-triggered release of DNA. Polymer, 2014, 55, 2761-2771.	3.8	20
45	Bromelain-decorated hybrid nanoparticles based on lactobionic acid-conjugated chitosan for inÂvitro anti-tumor study. Journal of Biomaterials Applications, 2017, 32, 206-218.	2.4	20
46	Acid-labile poly(ortho ester amino alcohols) by ring-opening polymerization for controlled DNA release and improved serum tolerance. Polymer, 2016, 96, 146-155.	3.8	19
47	Acid-degradable lactobionic acid-modified soy protein nanogels crosslinked by ortho ester linkage for efficient antitumor in vivo. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 128, 247-258.	4.3	19
48	Succinyl pullulan-crosslinked carboxymethyl chitosan sponges for potential wound dressing. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 61-70.	3.4	18
49	Folic acid-conjugated soybean protein-based nanoparticles mediate efficient antitumor ability inÂvitro. Journal of Biomaterials Applications, 2017, 31, 832-843.	2.4	18
50	Synthesis and Characterization of Homopolymers Bearing Acidâ€Cleavable Cationic Sideâ€Chains for pHâ€Modulated Release of DNA. Macromolecular Bioscience, 2014, 14, 1015-1024.	4.1	17
51	pH-sensitive amphiphilic triblock copolymers containing ortho ester main-chains as efficient drug delivery platforms. Materials Science and Engineering C, 2019, 94, 169-178.	7.3	17
52	Carrier-free prodrug nanoparticles based on dasatinib and cisplatin for efficient antitumor in vivo. Asian Journal of Pharmaceutical Sciences, 2021, 16, 762-771.	9.1	17
53	Acid-breakable TPGS-functionalized and diallyl disulfide-crosslinked nanogels for enhanced inhibition of MCF-7/ADR solid tumours. Journal of Materials Chemistry B, 2019, 7, 240-250.	5.8	16
54	Hybrid micelles based on Pt (IV) polymeric prodrug and TPGS for the enhanced cytotoxicity in drug-resistant lung cancer cells. Colloids and Surfaces B: Biointerfaces, 2020, 195, 111256.	5.0	16

#	Article	IF	CITATIONS
55	Dynamic precise dual-drug-backboned nano-prodrugs for selective chemotherapy. Acta Biomaterialia, 2021, 129, 209-219.	8.3	15
56	Acid-sensitive and L61-crosslinked hyaluronic acid nanogels for overcoming tumor drug-resistance. International Journal of Biological Macromolecules, 2021, 188, 11-23.	7.5	14
57	A sequentially responsive nanogel via Pt(IV) crosslinking for overcoming GSH-mediated platinum resistance. Journal of Colloid and Interface Science, 2021, 601, 85-97.	9.4	14
58	Sequentially dynamic polymeric micelles with detachable PEGylation for enhanced chemotherapeutic efficacy. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 145, 54-64.	4.3	13
59	Wellâ€Defined Poly(Ortho Ester Amides) for Potential Drug Carriers: Probing the Effect of Extra―and Intracellular Drug Release on Chemotherapeutic Efficacy. Macromolecular Bioscience, 2017, 17, 1600503.	4.1	12
60	Intestine-penetrating, pH-sensitive and double-layered nanoparticles for oral delivery of doxorubicin with reduced toxicity. Journal of Materials Chemistry B, 2019, 7, 3692-3703.	5.8	12
61	Self-assembled ternary hybrid nanodrugs for overcoming tumor resistance and metastasis. Acta Pharmaceutica Sinica B, 2021, 11, 3595-3607.	12.0	12
62	Glucose-Targeted Hydroxyapatite/Indocyanine Green Hybrid Nanoparticles for Collaborative Tumor Therapy. ACS Applied Materials & Interfaces, 2021, 13, 37665-37679.	8.0	12
63	A small molecule nanodrug consisting of pH-sensitive ortho ester–dasatinib conjugate for cancer therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 163, 188-197.	4.3	11
64	Crystallographic evidence for substrate-assisted catalysis of β-N-acetylhexosaminidas from Akkermansia muciniphila. Biochemical and Biophysical Research Communications, 2019, 511, 833-839.	2.1	10
65	Lactobionic acid-modified phycocyanin nanoparticles loaded with doxorubicin for synergistic chemo-photodynamic therapy. International Journal of Biological Macromolecules, 2021, 186, 206-217.	7.5	10
66	pH-sensitive and tumor-targeting nanogels based on ortho ester-modified PEG for improving the in vivo anti-tumor efficiency of doxorubicin. Colloids and Surfaces B: Biointerfaces, 2021, 207, 112024.	5.0	10
67	Dual-stimuli-sensitive poly(ortho ester disulfide urethanes)-based nanospheres with rapid intracellular drug release for enhanced chemotherapy. Science China Chemistry, 2018, 61, 1447-1459.	8.2	9
68	Biochemical characteristics and crystallographic evidence for substrate-assisted catalysis of a β-N-acetylhexosaminidase in Akkermansia muciniphila. Biochemical and Biophysical Research Communications, 2019, 517, 29-35.	2.1	9
69	Use of Microfluidics to Fabricate Bioerodable Lipid Hybrid Nanoparticles Containing Hydromorphone or Ketamine for the Relief of Intractable Pain. Pharmaceutical Research, 2020, 37, 211.	3.5	9
70	Cisplatin-Cross-Linked and Oxygen-Resupply Hyaluronic Acid-Based Nanocarriers for Chemo-photodynamic Therapy. ACS Applied Nano Materials, 2021, 4, 10194-10208.	5.0	9
71	pH-sensitive micelles self-assembled from star-shaped TPGS copolymers with ortho ester linkages for enhanced MDR reversal and chemotherapy. Asian Journal of Pharmaceutical Sciences, 2021, 16, 363-373.	9.1	8
72	In vitro and in vivo antitumor study of folic acid-conjugated carboxymethyl chitosan and phenylboronic acid–based nanoparticles. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 495-506.	3.4	7

#	Article	IF	CITATIONS
73	GLUT1â€Targeting and GSHâ€Responsive DOX/L61 Nanodrug Particles for Enhancing MDR Breast Cancer Therapy. Particle and Particle Systems Characterization, 2020, 37, 2000165.	2.3	7
74	pH-sensitive small molecule nanodrug self-assembled from amphiphilic vitamin B6-E analogue conjugate for targeted synergistic cancer therapy. Colloids and Surfaces B: Biointerfaces, 2020, 191, 111000.	5.0	7
75	Backboneâ€Based LCSTâ€Type Hyperbranched Poly(oligo(ethylene glycol)) with CO ₂ â€Reversible Iminoboronate Linkers. Macromolecular Chemistry and Physics, 2018, 219, 1800346.	2.2	6
76	pH-sensitive deoxycholic acid dimer for improving doxorubicin delivery and antitumor activity in vivso. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111319.	5.0	6
77	Dynamic methotrexate nano-prodrugs with detachable PEGylation for highly selective synergistic chemotherapy. Colloids and Surfaces B: Biointerfaces, 2021, 201, 111619.	5.0	6
78	Hybrid nanoparticles based on ortho ester-modified pluronic L61 and chitosan for efficient doxorubicin delivery. International Journal of Biological Macromolecules, 2021, 183, 1596-1606.	7.5	6
79	pH-triggered small molecule nano-prodrugs emulsified from tryptamine-cinnamaldehyde twin drug for targeted synergistic glioma therapy. Colloids and Surfaces B: Biointerfaces, 2021, 207, 112052.	5.0	6
80	Acid‣abile Copolymer Micelles Crossâ€Linked by a Twin Ortho Ester Crossâ€Linking Agent: Synthesis, Characterization, and Evaluation. Macromolecular Chemistry and Physics, 2016, 217, 2182-2190.	2.2	4
81	Low molecular weight PEI-grafted carboxyl-modified soybean protein as gene carriers with reduced cytotoxicity and greatly improved transfection in vitro. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 617-627.	3.4	4
82	Phenylboronic acid-functionalized ultra-pH-sensitive micelles for enhanced tumor penetration and inhibition in vitro. Journal of Materials Science, 2019, 54, 5695-5711.	3.7	4
83	Dynamic micelles with detachable PEGylation at tumoral extracellular pH for enhanced chemotherapy. Asian Journal of Pharmaceutical Sciences, 2020, 15, 728-738.	9.1	4
84	Acid-labile hyperbranched poly(ortho ester amido amine) as efficient gene carriers: Preparation, characterization, and in vitro evaluation. Journal of Biomaterials Applications, 2019, 34, 104-116.	2.4	3
85	pH-sensitive, dynamic graft polymer micelles via simple synthesis for enhanced chemotherapeutic efficacy. Journal of Biomaterials Applications, 2020, 34, 1059-1070.	2.4	3
86	Chemosensitizing micelles self-assembled from amphiphilic TPGS-indomethacin twin drug for significantly synergetic multidrug resistance reversal. Journal of Biomaterials Applications, 2021, 35, 994-1004.	2.4	3
87	Self-assembled 5-fluorouracil-cinnamaldehyde nanodrugs for greatly improved chemotherapy in vivo. Journal of Biomaterials Applications, 2021, 36, 088532822198953.	2.4	2
88	Fluorideâ€Ortho Ester Dimerâ€Based pHâ€6ensitive Nanoparticles for Oxygen Delivery and Enhanced Photodynamic Therapy. Particle and Particle Systems Characterization, 2022, 39, .	2.3	2
89	Acid-sensitive polymeric prodrug micelles for achieving enhanced chemo-photodynamic therapy. Journal of Drug Delivery Science and Technology, 2022, 74, 103514.	3.0	1
90	Carrier-free prodrug nanoparticles based on lonidamine and cisplatin for synergistic treatment of breast cancer. Journal of Biomaterials Applications, 0, , 088532822211079.	2.4	1

#	Article	IF	CITATIONS
91	pH-triggered poly(ethylene glycol) nanogels prepared through orthoester linkages as potential drug carriers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 1059-1068.	3.4	0
92	Evaluation of cationic polymers as carriers and adjuvants for DNA vaccines. FASEB Journal, 2008, 22, 575-575.	0.5	0