Stephen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3776768/publications.pdf

Version: 2024-02-01

840776 752698 31 418 11 20 citations h-index g-index papers 42 42 42 331 docs citations all docs times ranked citing authors

#	Article	IF	CITATIONS
1	Modeling, approximation, and time optimal temperature control for binder removal from ceramics. Discrete and Continuous Dynamical Systems - Series B, 2021, .	0.9	O
2	Reaction–permeability optimum time heating policy via process control for debinding green ceramic components. Advances in Applied Ceramics, 2020, 119, 150-157.	1.1	1
3	A process control algorithm for reactionâ€diffusion minimum time heating cycles for binder removal from green bodies. Journal of the American Ceramic Society, 2019, 102, 1030-1040.	3 . 8	3
4	Minimum time heating cycles for diffusion―versus permeabilityâ€controlled binder removal from ceramic green bodies. Journal of the American Ceramic Society, 2017, 100, 529-538.	3.8	2
5	Evolved gas analysis during sintering of barium titanate. Advances in Applied Ceramics, 2016, 115, 264-271.	1.1	3
6	Minimum Time Heating Cycles for Diffusion ontrolled Binder Removal from Ceramic Green Bodies. Journal of the American Ceramic Society, 2015, 98, 57-65.	3.8	10
7	Analytic Model for the Diffusant Concentration in Ceramic Green Bodies During Diffusionâ€Controlled Thermal Binder Removal. Journal of the American Ceramic Society, 2013, 96, 2737-2744.	3.8	5
8	Plasma Treated Multi-Walled Carbon Nanotubes (MWCNTs) for Epoxy Nanocomposites. Polymers, 2011, 3, 2142-2155.	4.5	24
9	Pressure Distribution and Defect Formation in Green Ceramic Bodies During Supercritical Extraction of Binder. Journal of the American Ceramic Society, 2009, 92, 365-370.	3 . 8	3
10	Models of the Strength of Green Ceramic Bodies as a Function of Binder Content and Temperature. Ceramic Transactions, 2009, , 239-247.	0.1	1
11	Modeling of the Pressure in 1 -D Green Ceramic Bodies during Depressurization from Conditions of Supercritical Extraction of Binder. Ceramic Transactions, 2009, , 227-237.	0.1	O
12	Permeability of Laminated Green Ceramic Tapes as a Function of Binder Loading. Journal of the American Ceramic Society, 2008, 91, 1553-1558.	3.8	9
13	Scaling Analysis of the Effect of Binder Content and Binder Distribution on the Gas Permeability of Porous Green Ceramics. Journal of the American Ceramic Society, 2008, 91, 2150-2155.	3.8	0
14	Permeability of Green Ceramic Tapes as a Function of Binder Loading. Journal of the American Ceramic Society, 2007, 90, 456-461.	3.8	9
15	Effect of Decomposition Kinetics and Failure Criteria on Binder-Removal Cycles From Three-Dimensional Porous Green Bodies. Journal of the American Ceramic Society, 2006, 89, 176-183.	3.8	14
16	Heat Transfer in Porous Green Bodies During Binder Removal by Minimum Time Heating Cycles. Journal of the American Ceramic Society, 2006, 89, 1193-1199.	3.8	9
17	Effect of Processing on the Microstructure and Induced-Strain Mismatch in Magnesia-Alumina-Layered Composites. Journal of the American Ceramic Society, 2006, 89, 060612075903004-???.	3.8	1
18	Strainâ€Induced Deformation in Magnesia–Alumina Layered Composites. Journal of the American Ceramic Society, 2005, 88, 2064-2070.	3.8	3

STEPHEN

#	Article	lF	CITATION
19	Adsorption and Diffusion Behavior of Ethane and Ethylene in Sol-Gel Derived Microporous Silica. Adsorption, 2005, 11, 491-499.	3.0	13
20	Effect of porosity on the electrical properties of Y2O3-doped SrTiO3 internal boundary layer capacitors. Journal of Applied Physics, 2004, 95, 4310-4315.	2.5	6
21	Defect Formation during Supercritical Extraction of Binder from Green Ceramic Components. Journal of the American Ceramic Society, 2004, 87, 1254-1258.	3.8	6
22	Effects of supercritical extraction on the plasticization of poly(vinyl butyral) and dioctyl phthalate films. Journal of Supercritical Fluids, 2004, 28, 113-120.	3.2	11
23	Modeling of the Pressure Distribution in Threeâ€Dimensional Porous Green Bodies during Binder Removal. Journal of the American Ceramic Society, 2003, 86, 234-240.	3.8	22
24	Determination of the Minimum Time for Binder Removal and Optimum Geometry for Threeâ€Dimensional Porous Green Bodies. Journal of the American Ceramic Society, 2003, 86, 2087-2092.	3.8	13
25	Analytic method for the minimum time for binder removal from three-dimensional porous green bodies. Journal of Materials Research, 2003, 18, 2717-2723.	2.6	23
26	Pressure Distribution During Binder Burnout in Three-dimensional Porous Ceramic Bodies with Anisotropic Permeability. Journal of Materials Research, 2002, 17, 1434-1440.	2.6	28
27	Determination of Binder Decomposition Kinetics for Specifying Heating Parameters in Binder Burnout Cycles. Journal of the American Ceramic Society, 2002, 85, 780-786.	3.8	29
28	Strontium Zirconate and Strontium Titanate Ceramics for Highâ€Voltage Applications: Synthesis, Processing, and Dielectric Properties. Journal of the American Ceramic Society, 2001, 84, 1648-1650.	3.8	90
29	Effect of Solids Loading and Dispersant Concentration on Strain Mismatch and Deformation of Slipâ€Cast Green Bodies. Journal of the American Ceramic Society, 2001, 84, 2274-2280.	3.8	8
30	Role of Length Scale on Pressure Increase and Yield of Poly(vinyl butyral)–Barium Titanate–Platinum Multilayer Ceramic Capacitors during Binder Burnout. Journal of the American Ceramic Society, 2000, 83, 2645-2653.	3.8	38
31	The role of thermal and transport properties on the binder burnout of injection-molded ceramic	12.7	32