
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3776598/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization of Healthcare Emergency Departments by Agent-Based Simulation. Procedia Computer Science, 2011, 4, 1880-1889.	1.2	72
2	Adaptive Scheduling for Master-Worker Applications on the Computational Grid. Lecture Notes in Computer Science, 2000, , 214-227.	1.0	65
3	An Agent-Based Decision Support System for Hospitals Emergency Departments. Procedia Computer Science, 2011, 4, 1870-1879.	1.2	63
4	Simulation Optimization for Healthcare Emergency Departments. Procedia Computer Science, 2012, 9, 1464-1473.	1.2	63
5	A simulation and optimization based method for calibrating agent-based emergency department models under data scarcity. Computers and Industrial Engineering, 2017, 103, 300-309.	3.4	47
6	Enhancing wildland fire prediction on cluster systems applying evolutionary optimization techniques. Future Generation Computer Systems, 2005, 21, 61-67.	4.9	36
7	Modeling Master/Worker applications for automatic performance tuning. Parallel Computing, 2006, 32, 568-589.	1.3	35
8	Wildland fire growth prediction method based on Multiple Overlapping Solution. Journal of Computational Science, 2010, 1, 229-237.	1.5	35
9	Parallel Application Signature for Performance Analysis and Prediction. IEEE Transactions on Parallel and Distributed Systems, 2015, 26, 2009-2019.	4.0	33
10	Towards an Agent-Based Simulation of Hospital Emergency Departments. , 2009, , .		30
11	An asynchronous and iterative load balancing algorithm for discrete load model. Journal of Parallel and Distributed Computing, 2002, 62, 1729-1746.	2.7	29
12	Applying a Dynamic Data Driven Genetic Algorithm to Improve Forest Fire Spread Prediction. Lecture Notes in Computer Science, 2008, , 36-45.	1.0	29
13	An agent-based model for quantitatively analyzing and predicting the complex behavior of emergency departments. Journal of Computational Science, 2017, 21, 11-23.	1.5	27
14	Using an Agent-based Simulation for Predicting the Effects of Patients Derivation Policies in Emergency Departments. Procedia Computer Science, 2013, 18, 641-650.	1.2	24
15	Design and implementation of a dynamic tuning environment. Journal of Parallel and Distributed Computing, 2007, 67, 474-490.	2.7	22
16	A Hybrid Simulation Model to Test Behaviour Designs in an Emergency Evacuation. Procedia Computer Science, 2012, 9, 266-275.	1.2	22
17	Individual-oriented Model Crowd Evacuations Distributed Simulation. Procedia Computer Science, 2014, 29, 1600-1609.	1.2	21
18	MATE: Monitoring, Analysis and Tuning Environment for parallel/distributed applications. Concurrency Computation Practice and Experience, 2007, 19, 1517-1531.	1.4	18

#	Article	IF	CITATIONS
19	ABMS optimization for emergency departments. , 2012, , .		15
20	Evacuation Simulation Supporting High Level Behaviour-based Agents. Procedia Computer Science, 2013, 18, 1495-1504.	1.2	15
21	Clustering and reassignment-based mapping strategy for message-passing architectures. Journal of Systems Architecture, 2003, 48, 267-283.	2.5	13
22	Extraction of Parallel Application Signatures for Performance Prediction. , 2010, , .		13
23	Impact of parallel programming models and CPUs clock frequency on energy consumption of HPC systems. , 2011, , .		13
24	High performance distributed cluster-based individual-oriented fish school simulation. Procedia Computer Science, 2011, 4, 76-85.	1.2	13
25	Crowd Evacuations SaaS: An ABM Approach. Procedia Computer Science, 2015, 51, 473-482.	1.2	13
26	Quantitative Evaluation of Decision Effects in the Management of Emergency Department Problems. Procedia Computer Science, 2015, 51, 433-442.	1.2	13
27	Hybrid Message Pessimistic Logging. Improving current pessimistic message logging protocols. Journal of Parallel and Distributed Computing, 2017, 104, 206-222.	2.7	13
28	The Convergence of Realistic Distributed Load-Balancing Algorithms. Theory of Computing Systems, 2007, 41, 609-618.	0.7	12
29	Fault tolerance at system level based on RADIC architecture. Journal of Parallel and Distributed Computing, 2015, 86, 98-111.	2.7	12
30	MATE: Dynamic Performance Tuning Environment. Lecture Notes in Computer Science, 2004, , 98-107.	1.0	12
31	Parallel application signature. , 2009, , .		11
32	Learning parallel programming: a challenge for university students. Procedia Computer Science, 2010, 1, 875-883.	1.2	11
33	CISNE: A New Integral Approach for Scheduling Parallel Applications on Non-dedicated Clusters. Lecture Notes in Computer Science, 2005, , 220-230.	1.0	11
34	Dynamic and Distributed Multipath Routing Policy for High-Speed Cluster Networks. , 2009, , .		10
35	Care HPS: A high performance simulation tool for parallel and distributed agent-based modeling. Future Generation Computer Systems, 2017, 68, 59-73.	4.9	10
36	Performance comparison of dynamic load-balancing strategies for distributed computing. , 0, , .		9

#	Article	IF	CITATIONS
37	Modeling master-worker applications in POETRIES. , 0, , .		9
38	Optimizing Latency under Throughput Requirements for Streaming Applications on Cluster Execution. , 2005, , .		9
39	An Adaptive System for Forest Fire Behavior Prediction. , 2008, , .		9
40	Software probes: towards a quick method for machine characterization and application performance prediction. , 2008, , .		9
41	Scalable dynamic Monitoring, Analysis and Tuning Environment for parallel applications. Journal of Parallel and Distributed Computing, 2010, 70, 330-337.	2.7	9
42	An Innovative Teaching Strategy to Understand High-Performance Systems through Performance Evaluation. Procedia Computer Science, 2012, 9, 1733-1742.	1.2	9
43	Proximity Load Balancing for Distributed Cluster-based Individual-oriented Fish School Simulations. Procedia Computer Science, 2012, 9, 328-337.	1.2	9
44	A Tool for Selecting the Right Target Machine for Parallel Scientific Applications. Procedia Computer Science, 2013, 18, 1824-1833.	1.2	9
45	Evolutionary Optimization Techniques on Computational Grids. Lecture Notes in Computer Science, 2002, , 513-522.	1.0	9
46	Clustering and reassignment-based mapping strategy for message-passing architectures. , 0, , .		8
47	The KScalar simulator. Journal on Educational Resources in Computing, 2002, 2, 73-116.	1.3	8
48	Designing a Video-on-Demand System for a Brazilian High Speed Network. , 2006, , .		8
49	Selection methods for interactive creation and management of objects in 3D immersive environments. Procedia Computer Science, 2010, 1, 2609-2617.	1.2	8
50	Simulating the micro-level behavior of emergency department for macro-level features prediction. , 2015, , .		8
51	Using PDES to Simulate Individual-Oriented Models in Ecology: A Case Study. Lecture Notes in Computer Science, 2002, , 107-116.	1.0	8
52	Coscheduling and Multiprogramming Level in a Non-dedicated Cluster. Lecture Notes in Computer Science, 2004, , 327-336.	1.0	8
53	On-Line Performance Modeling for MPI Applications. Lecture Notes in Computer Science, 2008, , 68-77.	1.0	8
54	A Fuzzy Logic Fish School Model. Lecture Notes in Computer Science, 2009, , 13-22.	1.0	8

#	Article	IF	CITATIONS
55	Tuning Application in a Multi-cluster Environment. Lecture Notes in Computer Science, 2006, , 78-88.	1.0	8
56	A Microprocessor-Based Digital Control Course. IEEE Transactions on Education, 1983, 26, 107-111.	2.0	7
57	Performance prediction using an application-oriented mapping tool. , 2004, , .		7
58	Increasing the cluster availability using RADIC. , 2006, , .		7
59	Improving forest-fire prediction by applying a statistical approach. Forest Ecology and Management, 2006, 234, S210.	1.4	7
60	Modeling Parallel Scientific Applications through their Input/Output Phases. , 2012, , .		7
61	P3S: A Methodology to Analyze and Predict Application Scalability. IEEE Transactions on Parallel and Distributed Systems, 2018, 29, 642-658.	4.0	7
62	Investigating Impacts of Telemedicine on Emergency Department Through Decreasing Non-Urgent Patients in Spain. IEEE Access, 2020, 8, 164238-164245.	2.6	7
63	Automatic Tuning of Master/Worker Applications. Lecture Notes in Computer Science, 2005, , 95-103.	1.0	7
64	Exploiting Throughput for Pipeline Execution in Streaming Image Processing Applications. Lecture Notes in Computer Science, 2006, , 1095-1105.	1.0	7
65	Dynamic Pipeline Mapping (DPM). Lecture Notes in Computer Science, 2008, , 295-304.	1.0	7
66	Microprogramming: A tool for vertical migration. Microprocessing and Microprogramming, 1981, 8, 219-227.	0.3	6
67	Simulation and visualization tools for link-based parallel architectures. Microprocessing and Microprogramming, 1991, 32, 479-486.	0.3	6
68	Providing interactive video on demand services in distributed architecture. , 2003, , .		6
69	AUTOMATIC PERFORMANCE ANALYSIS AND DYNAMIC TUNING OF DISTRIBUTED APPLICATIONS. Parallel Processing Letters, 2003, 13, 169-187.	0.4	6
70	Distributed P2P Merging Policy to Decentralize the Multicasting Delivery. , 0, , .		6
71	Evaluation of the field-programmable cache. , 2006, , .		6
72	A Computational Approach to TSP Performance Prediction Using Data Mining. , 2007, , .		6

#	Article	IF	CITATIONS
73	How SPMD applications could be efficiently executed on multicore environments?. , 2009, , .		6
74	Designing an effective P2P system for a VoD system to exploit the multicast communication. Journal of Parallel and Distributed Computing, 2010, 70, 1175-1192.	2.7	6
75	A reconfigurable cache memory with heterogeneous banks. , 2010, , .		6
76	A Performance Tuning Strategy for Complex Parallel Application. , 2010, , .		6
77	Simulation and Big Data: A Way to Discover Unusual Knowledge in Emergency Departments: Work-in-Progress Paper. , 2014, , .		6
78	Agent Based Model and Simulation of MRSA Transmission in Emergency Departments. Procedia Computer Science, 2015, 51, 443-452.	1.2	6
79	Analyzing the Parallel I/O Severity of MPI Applications. , 2017, , .		6
80	Prediction of Energy Consumption by Checkpoint/Restart in HPC. IEEE Access, 2019, 7, 71791-71803.	2.6	6
81	A Method for Projections of the Emergency Department Behaviour by Non-Communicable Diseases from 2019 to 2039. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 1-1.	3.9	6
82	Dynamic Performance Tuning Environment. Lecture Notes in Computer Science, 2001, , 36-45.	1.0	6
83	Coscheduling under Memory Constraints in a NOW Environment. Lecture Notes in Computer Science, 2001, , 41-65.	1.0	6
84	Double P-Tree: A Distributed Architecture for Large-Scale Video-on-Demand. Lecture Notes in Computer Science, 2002, , 816-825.	1.0	6
85	Challenges and Issues of the Integration of RADIC into Open MPI. Lecture Notes in Computer Science, 2009, , 73-83.	1.0	6
86	Dynamic microprogramming in computer architecture redefinition. Euromicro Newsletter, 1980, 6, 98-103.	0.1	5
87	Dynamic Performance Tuning Supported by Program Specification. Scientific Programming, 2002, 10, 35-44.	0.5	5
88	Cooperating Coscheduling in a Non-dedicated Cluster. Lecture Notes in Computer Science, 2003, , 212-217.	1.0	5
89	S 2 F 2 M – Statistical System for Forest Fire Management. Lecture Notes in Computer Science, 2005, , 427-434.	1.0	5
90	Optimization of emergency departments by agent-based modeling and simulation. , 2012, , .		5

Optimization of emergency departments by agent-based modeling and simulation. , 2012, , . 90

#	Article	IF	CITATIONS
91	Integrating Automatic Techniques in a Performance Analysis Session. Lecture Notes in Computer Science, 2000, , 173-177.	1.0	5
92	Exploiting Knowledge of Temporal Behaviour in Parallel Programs for Improving Distributed Mapping. Lecture Notes in Computer Science, 2000, , 262-271.	1.0	5
93	Predictive Coscheduling Implementation in a Non-dedicated Linux Cluster. Lecture Notes in Computer Science, 2001, , 732-742.	1.0	5
94	Self-tuning machines. Microprocessing and Microprogramming, 1985, 15, 195-201.	0.3	4
95	IMPROVING BANDWIDTH EFFICIENCY IN DISTRIBUTED VIDEO-ON-DEMAND ARCHITECTURES. Parallel Processing Letters, 2003, 13, 589-600.	0.4	4
96	Between classical and ideal: enhancing wildland fire prediction using cluster computing. Cluster Computing, 2006, 9, 329-343.	3.5	4
97	Task distribution using factoring load balancing in Master–Worker applications. Information Processing Letters, 2009, 109, 902-906.	0.4	4
98	High performance individual-oriented simulation using complex models. Procedia Computer Science, 2010, 1, 447-456.	1.2	4
99	Analytical Performance Prediction for Iterative Reconstruction Techniques in Electron Tomography of Biological Structures. International Journal of High Performance Computing Applications, 2010, 24, 457-468.	2.4	4
100	Methodology for Performance Evaluation of the Input/Output System on Computer Clusters. , 2011, , .		4
101	What is Missing in Current Checkpoint Interval Models?. , 2011, , .		4
102	Improving Communication Patterns for Distributed Cluster-based Individual-oriented Fish School Simulations. Procedia Computer Science, 2013, 18, 702-711.	1.2	4
103	Computing, a Powerful Tool for Improving the Parameters Simulation Quality in Flood Prediction. Procedia Computer Science, 2014, 29, 299-309.	1.2	4
104	Hybrid Message Logging. Combining advantages of Sender-based and Receiver-based Approaches. Procedia Computer Science, 2014, 29, 2380-2390.	1.2	4
105	Support managing population aging stress of emergency departments in a computational way. Procedia Computer Science, 2017, 108, 149-158.	1.2	4
106	An approach for an efficient execution of SPMD applications on Multi-core environments. Future Generation Computer Systems, 2017, 66, 11-26.	4.9	4
107	RaaS: Resilience as a Service. , 2018, , .		4
108	An Intelligent Scheduling of Non-Critical Patients Admission for Emergency Department. IEEE Access, 2020, 8, 9209-9220.	2.6	4

#	Article	IF	CITATIONS
109	Dynamic Performance Tuning of Distributed Programming Libraries. Lecture Notes in Computer Science, 2003, , 191-200.	1.0	4
110	Automatic Generation of Dynamic Tuning Techniques. Lecture Notes in Computer Science, 2007, , 13-22.	1.0	4
111	Implementing Explicit and Implicit Coscheduling in a PVM Environment. Lecture Notes in Computer Science, 2000, , 1165-1170.	1.0	4
112	Improving Optimistic PDES in PVM Environments. Lecture Notes in Computer Science, 2000, , 304-312.	1.0	4
113	Architectures for an Efficient Application Execution in a Collection of HNOWS. Lecture Notes in Computer Science, 2002, , 450-460.	1.0	4
114	Applying Load Balancing in Data Parallel Applications Using DASUD. Lecture Notes in Computer Science, 2003, , 237-241.	1.0	4
115	Using On-the-Fly Simulation for Estimating the Turnaround Time on Non-dedicated Clusters. Lecture Notes in Computer Science, 2006, , 177-187.	1.0	4
116	Tuning architecture via microprogramming. Information Processing Letters, 1980, 11, 102-109.	0.4	3
117	Floppy disk controllers for a computer architecture course. IEEE Transactions on Education, 1989, 32, 112-117.	2.0	3
118	Impact of task duplication on static-scheduling performance in multiprocessor systems with variable execution-time tasks. , 1990, , .		3
119	A quantitative approach for teaching parallel computing. SIGCSE Bulletin, 1992, 24, 286-298.	0.1	3
120	Designing parallel systems: a performance prediction problem. Microprocessors and Microsystems, 1992, 16, 25-35.	1.8	3
121	Evaluation of strategies to reduce the impact of machine reclaim in cycle-stealing environments. , 0, , .		3
122	Efficient resource management applied to master–worker applications. Journal of Parallel and Distributed Computing, 2004, 64, 767-773.	2.7	3
123	Automatic Tuning of Data Distribution Using Factoring in Master/Worker Applications. Lecture Notes in Computer Science, 2005, , 132-139.	1.0	3
124	A Performance Prediction for Iterative Reconstruction Techniques on Tomography. , 0, , .		3
125	Cooperating CoScheduling: A Coscheduling Proposal Aimed at Non-Dedicated Heterogeneous NOWs. Journal of Computer Science and Technology, 2007, 22, 695-710.	0.9	3
126	Performance models for dynamic tuning of parallel applications on Computational Grids. , 2008, , .		3

#	Article	IF	CITATIONS
127	Software Probes: A Method for Quickly Characterizing Applications' Performance on Heterogeneous Environments. , 2009, , .		3
128	AMTHA: An Algorithm for Automatically Mapping Tasks to Processors in Heterogeneous Multiprocessor Architectures. , 2009, , .		3
129	FT-DRB: A Method for Tolerating Dynamic Faults in High-Speed Interconnection Networks. , 2010, , .		3
130	Transparent fault tolerance middleware at user level. , 2012, , .		3
131	A Hybrid MPI+OpenMP Solution of the Distributed Cluster-based Fish Schooling Simulator. Procedia Computer Science, 2014, 29, 2111-2120.	1.2	3
132	Optimal Run Length for Discrete-event Distributed Cluster-based Simulations. Procedia Computer Science, 2014, 29, 73-83.	1.2	3
133	An Agent-Based Model for assessment of Aedes Aegypti pupal productivity. , 2015, , .		3
134	Strip Partitioning for Ant Colony Parallel and Distributed Discrete-event Simulation. Procedia Computer Science, 2015, 51, 483-492.	1.2	3
135	Scheduling model for non-critical patients admission into a hospital emergency department. , 2017, , .		3
136	A Fault Tolerance Manager with Distributed Coordinated Checkpoints for Automatic Recovery. , 2017, ,		3
137	Analyzing the data behavior of parallel application for extracting performance knowledge. , 2019, , .		3
138	Soft errors detection and automatic recovery based on replication combined with different levels of checkpointing. Future Generation Computer Systems, 2020, 113, 240-254.	4.9	3
139	Modeling Pipeline Applications in POETRIES. Lecture Notes in Computer Science, 2005, , 83-92.	1.0	3
140	A Space and Time Sharing Scheduling Approach for PVM Non-dedicated Clusters. Lecture Notes in Computer Science, 2005, , 379-387.	1.0	3
141	Efficient Execution of Scientific Computation on Geographically Distributed Clusters. Lecture Notes in Computer Science, 2006, , 691-698.	1.0	3
142	Optimization of Fire Propagation Model Inputs: A Grand Challenge Application on Metacomputers. Lecture Notes in Computer Science, 2002, , 447-451.	1.0	3
143	Fish Schools: PDES Simulation and Real Time 3D Animation. Lecture Notes in Computer Science, 2004, , 505-512.	1.0	3
144	Increasing the Scalability and the Speedup of a Fish School Simulator. Lecture Notes in Computer Science, 2008, , 936-949.	1.0	3

#	Article	IF	CITATIONS
145	Adaptive L2 Cache for Chip Multiprocessors. Lecture Notes in Computer Science, 2008, , 28-37.	1.0	3
146	Accelerating Optimization of Input Parameters in Wildland Fire Simulation. Lecture Notes in Computer Science, 2004, , 1067-1074.	1.0	3
147	Automatic Performance Analysis of Message Passing Applications Using the KappaPl 2 Tool. Lecture Notes in Computer Science, 2005, , 293-300.	1.0	3
148	A Multipath Fault-Tolerant Routing Method for High-Speed Interconnection Networks. Lecture Notes in Computer Science, 2009, , 1078-1088.	1.0	3
149	On the stability of a distributed dynamic load balancing algorithm. , 0, , .		2
150	Predicting the Best Mapping for Efficient Exploitation of Task and Data Parallelism. Lecture Notes in Computer Science, 2003, , 218-223.	1.0	2
151	Exploitation of Parallelism for Applications with an Input Data Stream: Optimal Resource-Throughput Tradeoffs. , 0, , .		2
152	On the relevance of network topologies in distributed video-on-demand servers. , 2006, , .		2
153	Multi-Collaboration Domain Multicast P2P Delivery Architecture for VoD System. , 2006, , .		2
154	High-speed network modeling for full system simulation. , 2009, , .		2
155	Active learning processes to study memory hierarchy on Multicore systems. Procedia Computer Science, 2010, 1, 921-930.	1.2	2
156	Deadlock Avoidance for Interconnection Networks with Multiple Dynamic Faults. , 2010, , .		2
157	Predicting parallel applications performance using signatures: The workload effect. , 2011, , .		2
158	A decision support system for hospital emergency departments designed using agent-based modeling and simulation. , 2012, , .		2
159	Predicting robustness against transient faults of MPI based programs. International Journal of Computational Science and Engineering, 2016, 12, 155.	0.4	2
160	Analysis of parallel application checkpoint storage for system configuration. Journal of Supercomputing, 2021, 77, 4582-4617.	2.4	2
161	Analysis of Checkpoint I/O Behavior. Lecture Notes in Computer Science, 2020, , 191-205.	1.0	2
162	PIOM-PX: A Framework for Modeling the I/O Behavior of Parallel Scientific Applications. Lecture Notes in Computer Science, 2017, , 160-173.	1.0	2

#	Article	IF	CITATIONS
163	Improving Wildland Fire Prediction on MPI Clusters. Lecture Notes in Computer Science, 2003, , 520-528.	1.0	2
164	Search of Performance Inefficiencies in Message Passing Applications with KappaPI 2 Tool. , 2006, , 409-419.		2
165	Teaching Model for Computational Science and Engineering Programme. Lecture Notes in Computer Science, 2009, , 34-43.	1.0	2
166	Implementing and Analysing an Effective Explicit Coscheduling Algorithm on a NOW. Lecture Notes in Computer Science, 2001, , 75-88.	1.0	2
167	Adjusting Time Slices to Apply Coscheduling Techniques in a Non-dedicated NOW. Lecture Notes in Computer Science, 2002, , 234-239.	1.0	2
168	Efficient Execution on Long-Distance Geographically Distributed Dedicated Clusters. Lecture Notes in Computer Science, 2004, , 311-318.	1.0	2
169	Performance and Power Evaluation of an Intelligently Adaptive Data Cache. Lecture Notes in Computer Science, 2005, , 363-375.	1.0	2
170	PAS2P Tool, Parallel Application Signature for Performance Prediction. Lecture Notes in Computer Science, 2012, , 293-302.	1.0	2
171	Improving Analysis in SPMD Applications for Performance Prediction. Transactions on Computational Science and Computational Intelligence, 2021, , 387-404.	0.3	2
172	A Digital Control Laboratory with Microprocessors. International Journal of Electrical Engineering and Education, 1983, 20, 297-302.	0.4	1
173	Integer linear programming for microprograms register allocation. Information Processing Letters, 1984, 19, 81-85.	0.4	1
174	Time-optimal control algorithm for microprocessor with asymmetrical bounds. IEE Proceedings D: Control Theory and Applications, 1984, 131, 238.	0.4	1
175	Teaching parallel processing. ACM SIGCUE Outlook, 1996, 24, 159-161.	0.1	1
176	Automatic detection of parallel program performance problems. , 1998, , .		1
177	STW: SWITCH TIME WARP: A MODEL FOR ROLLBACK REDUCTION IN OPTIMISTIC PDES. , 2000, , .		1
178	POETRIES: Performance Oriented Environment for Transparent Resource-Management, Implementing End-User Parallel/Distributed Applications. Lecture Notes in Computer Science, 2003, , 141-146.	1.0	1
179	A Performance Prediction Model for Tomographic Reconstruction in Structural Biology. Lecture Notes in Computer Science, 2005, , 90-103.	1.0	1
180	A Performance Prediction Methodology for Data-dependent Parallel Applications. , 2006, , .		1

#	Article	IF	CITATIONS
181	Using Simulation, Historical and Hybrid Estimation Systems for Enhacing Job Scheduling on NOWs. , 2006, , .		1
182	DVoDP/sup 2/P: distributed P2P assisted multicast VoD architecture. , 2006, , .		1
183	Improving Web Services Interoperability with Binding Extensions. , 2007, , .		1
184	TSP Performance Prediction Using Data Mining. , 2007, , .		1
185	Increasing the Performability of Computer Clusters Using RADIC II. , 2008, , .		1
186	Increasing the availability provided by RADIC with low overhead. , 2009, , .		1
187	Fast-Response Dynamic Routing Balancing for high-speed interconnection networks. , 2009, , .		1
188	A tool for efficient execution of SPMD applications on multicore clusters. Procedia Computer Science, 2010, 1, 2599-2608.	1.2	1
189	Methodology for Efficient Execution of SPMD Applications on Multicore Environments. , 2010, , .		1
190	Using SchedFlow for performance evaluation of workflow applications. , 2010, , .		1
191	Predictive and Distributed Routing Balancing for High Speed Interconnection Networks. , 2011, , .		1
192	Predictive and Distributed Routing Balancing on High-Speed Cluster Networks. , 2011, , .		1
193	Predictive and Distributed Routing Balancing, an Application-Aware Approach. Procedia Computer Science, 2013, 18, 179-188.	1.2	1
194	Theory and Practice of Model Transformations. Lecture Notes in Computer Science, 2013, , .	1.0	1
195	Tuning SPMD Applications in Order to Increase Performability. , 2013, , .		1
196	Simulating a Search Engine Service focusing on Network Performance. Procedia Computer Science, 2017, 108, 79-88.	1.2	1
197	Using the Application Signature to Detect Inefficiencies Generated by Mapping Policies in Parallel Applications. , 2017, , .		1
198	A Parallel I/O Behavior Model for HPC Applications Using Serial I/O Libraries. , 2017, , .		1

#	Article	IF	CITATIONS
199	Agile Tuning Method in Successive Steps for a River Flow Simulator. Lecture Notes in Computer Science, 2018, , 639-646.	1.0	1
200	Simulation of Ecologic Systems Using MPI. Lecture Notes in Computer Science, 2005, , 449-456.	1.0	1
201	Minimizing Paging Tradeoffs Applying Coscheduling Techniques in a Linux Cluster. Lecture Notes in Computer Science, 2003, , 593-607.	1.0	1
202	A Bottom-up Simulation Method to Quantitatively Predict Integrated Care System Performance. International Journal of Integrated Care, 2016, 16, 145.	0.1	1
203	Simulation of Forest Fire Propagation on Parallel & Distributed PVM Platforms. Lecture Notes in Computer Science, 2001, , 386-392.	1.0	1
204	Speeding Up Target Address Generation Using a Self-indexed FTB. Lecture Notes in Computer Science, 2002, , 517-521.	1.0	1
205	Adjusting the Lengths of Time Slices when Scheduling PVM Jobs with High Memory Requirements. Lecture Notes in Computer Science, 2002, , 156-164.	1.0	1
206	Web Remote Services Oriented Architecture for Cluster Management. Lecture Notes in Computer Science, 2002, , 368-375.	1.0	1
207	Multiprogramming Level of PVM Jobs in a Non-dedicated Linux NOW. Lecture Notes in Computer Science, 2003, , 577-585.	1.0	1
208	Target Encoding for Efficient Indirect Jump Prediction. Lecture Notes in Computer Science, 2005, , 497-507.	1.0	1
209	Performance Model for Parallel Mathematical Libraries Based on Historical Knowledgebase. Lecture Notes in Computer Science, 2008, , 110-119.	1.0	1
210	Dynamic on Demand Virtual Clusters in Grid. Lecture Notes in Computer Science, 2009, , 13-22.	1.0	1
211	A Fault-Tolerant Cache Service for Web Search Engines: RADIC Evaluation. Lecture Notes in Computer Science, 2012, , 298-310.	1.0	1
212	SMCV: a Methodology for Detecting Transient Faults in Multicore Clusters. CLEI Electronic Journal, 2012, 15, .	0.2	1
213	IaaS Cloud as a virtual environment for experimentation in checkpoint analysis. Journal of Computer Science and Technology(Argentina), 2019, 19, e11.	0.5	1
214	Automatic Tuning in Computational Grids. , 2007, , 381-389.		1
215	A model of checkpoint behavior for applications that have I/O. Journal of Supercomputing, 2022, 78, 15404-15436.	2.4	1
216	Scalable performance analysis method for SPMD applications. Journal of Supercomputing, 2022, 78, 19346-19371.	2.4	1

#	Article	IF	CITATIONS
217	A general purpose computer emulator. Euromicro Newsletter, 1978, 4, 133-140.	0.1	Ο
218	A development system for self tuning machines. Microprocessing and Microprogramming, 1984, 14, 145-148.	0.3	0
219	Vertical migration: an experimental study of the candidate-selection problem. IEE Proceedings E: Computers and Digital Techniques, 1987, 134, 177.	0.1	0
220	Coprocessor for real-time dynamic vertical migration. Microprocessing and Microprogramming, 1987, 20, 197-202.	0.3	0
221	Simulation of parallel systems: PSEE (Parallel System Evaluation Environment). Future Generation Computer Systems, 1994, 10, 291-294.	4.9	0
222	Programming environment for a transputer based computer. Future Generation Computer Systems, 1994, 10, 295-299.	4.9	0
223	Scheduling of parallel programs including dynamic loops. Future Generation Computer Systems, 1994, 10, 301-304.	4.9	0
224	Teaching parallel processing. SIGCSE Bulletin, 1996, 28, 159-161.	0.1	0
225	Analytical modelling of the network traffic performance. , 0, , .		0
226	Avoiding communication hot-spots in interconnection networks. , 0, , .		0
227	Exploiting Traffic Balancing and Multicast Efficiency in Distributed Video-on-Demand Architectures. Lecture Notes in Computer Science, 2003, , 859-869.	1.0	0
228	Modeling Clustered Task Graphs for Scheduling Large Parallel Programs in Distributed Systems. Simulation, 2004, 80, 243-254.	1.1	0
229	Graduate students learning strategies through research collaboration. , 2004, , .		0
230	Is evolution or revolution the way for improving the teaching methodology in computer science?. SIGCSE Bulletin, 2005, 37, 2-2.	0.1	0
231	Is evolution or revolution the way for improving the teaching methodology in computer science?. , 2005, , .		0
232	Wide and efficient trace prediction using the local trace predictor. , 2006, , .		0
233	Extracting Knowledge to Predict TSP Asymptotic Time Complexity. , 2007, , .		0
234	Administration and Exploitation of Qualitative Aspects in Declarative 3D Scene Synthesis. , 2007, , .		0

#	Article	IF	CITATIONS
235	Applying Data Mining to Define TSP Asymptotic Time Complexity. , 2007, , .		0
236	Functional Tests of the RADIC Fault Tolerance Architecture. Parallel, Distributed and Network-based Processing, Proceedings of the Euromicro Workshop on, 2007, , .	0.0	0
237	Models for high-speed interconnection networks performance analysis. , 2009, , .		0
238	Adaptive Multipath Routing for Congestion Control in InfiniBand Networks. , 2009, , .		0
239	An assessment of multi-core for a performance prediction model of tomographic reconstruction. , 2009, , .		0
240	Non-blocking adaptive cycles: Deadlock avoidance for fault-tolerant interconnection networks. , 2010, , .		0
241	Including the Workload Effect in the Parallel Program Signature. , 2011, , .		0
242	A Decision Support System for Hospital Emergency Departments Built Using Agent-Based Techniques. Advances in Intelligent and Soft Computing, 2011, , 247-253.	0.2	0
243	Performance Behavior Prediction Scheme for Shared-Memory Parallel Applications. , 2011, , .		0
244	Improving Probe Usability. , 2011, , .		0
245	A Fault-Tolerant Cache Service for Web Search Engines. , 2012, , .		0
246	Transparent Fault Tolerance Solution at Socket Level Based on RADIC. , 2012, , .		0
247	A methodology for transparent knowledge specification in a dynamic tuning environment. Software - Practice and Experience, 2012, 42, 281-302.	2.5	0
248	Saving Time in a Program Robustness Evaluation. , 2013, , .		0
249	Enhanced Method for the Signature Adaptability to the Application Behavior. , 2013, , .		0
250	Defining Asymptotic Parallel Time Complexity of Data-dependent Algorithms. New Generation Computing, 2014, 32, 123-144.	2.5	0
251	POSTER: "Analysis of scalability: A parallel application model approach". , 2014, , .		0
252	Crowd Turbulence with ABM and Verlet Integration on GPU Cards. Procedia Computer Science, 2016, 80, 2428-2432.	1.2	0

#	Article	IF	CITATIONS
253	Improving the Network of Search Engine Services Through Application-Driven Routing. Lecture Notes in Computer Science, 2017, , 638-650.	1.0	0
254	Virtual Clinical Trials: A tool for the Study of Transmission of Nosocomial Infections. Procedia Computer Science, 2017, 108, 109-118.	1.2	0
255	When is the Right Time to Start the Fault Tolerance Protection?. , 2017, , .		0
256	EVALUATION OF LIFESTYLE EFFECTS ON CHRONIC DISEASE MANAGEMENT. , 2018, , .		0
257	Improving SPMD Applications through Reduced Cache Miss Rate. , 2018, , .		0
258	RADIC Based Fault Tolerance System with Dynamic Resource Controller. Lecture Notes in Computer Science, 2018, , 624-631.	1.0	0
259	Heap-Based Algorithms to Accelerate Fingerprint Matching on Parallel Platforms. Communications in Computer and Information Science, 2019, , 61-72.	0.4	0
260	Benchmark Based on Application Signature to Analyze and Predict Their Behavior. Communications in Computer and Information Science, 2019, , 28-40.	0.4	0
261	Middleware to Manage Fault Tolerance Using Semi-Coordinated Checkpoints. IEEE Transactions on Parallel and Distributed Systems, 2021, 32, 254-268.	4.0	0
262	Monito: A Communication Monitoring Tool for a PVM-Linux Environment. Lecture Notes in Computer Science, 2000, , 233-241.	1.0	0
263	PDES: A Case Study Using the Switch Time Warp. Lecture Notes in Computer Science, 2001, , 327-334.	1.0	0
264	Parasite: Distributing Processing Using Java Applets. Lecture Notes in Computer Science, 2002, , 598-602.	1.0	0
265	Accelerating Wildland Fire Prediction on Cluster Systems. Lecture Notes in Computer Science, 2004, , 220-227.	1.0	0
266	Supporting Caching and Mirroring in Distributed Video-on-Demand Architectures. Lecture Notes in Computer Science, 2004, , 792-798.	1.0	0
267	A Pipeline-Based Approach for Mapping Message-Passing Applications with an Input Data Stream. Lecture Notes in Computer Science, 2004, , 224-233.	1.0	0
268	Graduate students learning strategies through research collaboration. SIGCSE Bulletin, 2004, 36, 262-262.	0.1	0
269	Topic 13 Routing and Communication in Interconnection Networks. Lecture Notes in Computer Science, 2005, , 973-973.	1.0	0
270	AGENT-BASED SIMULATION TO SUPPORT DECISION MAKING IN HEALTHCARE MANAGEMENT PLANNING. , 2010,		0

#	Article	IF	CITATIONS
271	AN AGENT-BASED DECISION SUPPORT SYSTEM FOR HOSPITAL EMERGENCY DEPARTMENTS. , 2011, , .		0
272	Fault-tolerant memory with content-recovery capability. IEE Proceedings E: Computers and Digital Techniques, 1981, 128, 7.	0.1	0
273	User-oriented architecture. IEE Proceedings E: Computers and Digital Techniques, 1981, 128, 149.	0.1	0
274	Technical note. Approach for register allocation in microprogram generation. IEE Proceedings E: Computers and Digital Techniques, 1984, 131, 99.	0.1	0
275	Heuristic algorithms for register allocation. IEE Proceedings E: Computers and Digital Techniques, 1992, 139, 73.	0.1	0
276	Synthetic Signature Program for Performance Scalability. Lecture Notes in Computer Science, 2016, , 345-355.	1.0	0
277	A General Approach to Predict the Performance Order of TSP Family Problems. , 2008, , 97-108.		0
278	Investigating the Components of Virtual Emergency Department. Studies in Health Technology and Informatics, 2022, 291, 118-130.	0.2	0
279	KP01 Solved byÂanÂn-Dimensional Sampling andÂClustering Heuristic. Lecture Notes in Computer Science, 2022, , 229-236.	1.0	Ο