List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3776458/publications.pdf Version: 2024-02-01

IODCE FEDDED

#	Article	IF	CITATIONS
1	Concurrent Activation of Kras and Canonical Wnt Signaling Induces Premalignant Lesions That Progress to Extrahepatic Biliary Cancer in Mice. Cancer Research, 2022, 82, 1803-1817.	0.9	7
2	Loss of Arid1a and Pten in Pancreatic Ductal Cells Induces Intraductal Tubulopapillary Neoplasm via the YAP/TAZ Pathway. Gastroenterology, 2022, 163, 466-480.e6.	1.3	12
3	Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nature Genetics, 2022, 54, 560-572.	21.4	250
4	<i>Hnf1b</i> -CreER causes efficient recombination of a Rosa26-RFP reporter in duct and islet δ cells. Islets, 2021, 13, 134-139.	1.8	4
5	REST is a major negative regulator of endocrine differentiation during pancreas organogenesis. Genes and Development, 2021, 35, 1229-1242.	5.9	13
6	TIGER: The gene expression regulatory variation landscape of human pancreatic islets. Cell Reports, 2021, 37, 109807.	6.4	45
7	HNF1A recruits KDM6A to activate differentiated acinar cell programs that suppress pancreatic cancer. EMBO Journal, 2020, 39, e102808.	7.8	44
8	Human pancreatic islet three-dimensional chromatin architecture provides insights into the genetics of type 2 diabetes. Nature Genetics, 2019, 51, 1137-1148.	21.4	208
9	The Transcription Factor ERG Regulates Super-Enhancers Associated With an Endothelial-Specific Gene Expression Program. Circulation Research, 2019, 124, 1337-1349.	4.5	73
10	Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis. Lancet Respiratory Medicine,the, 2019, 7, 227-238.	10.7	122
11	Re-analysis of public genetic data reveals a rare X-chromosomal variant associated with type 2 diabetes. Nature Communications, 2018, 9, 321.	12.8	85
12	MiRâ€184 expression is regulated by AMPK in pancreatic islets. FASEB Journal, 2018, 32, 2587-2600.	0.5	39
13	Long Non-coding RNAs as Local Regulators of Pancreatic Islet Transcription Factor Genes. Frontiers in Genetics, 2018, 9, 524.	2.3	26
14	Neuronatin regulates pancreatic \hat{l}^2 cell insulin content and secretion. Journal of Clinical Investigation, 2018, 128, 3369-3381.	8.2	47
15	Integrative network analysis highlights biological processes underlying GLP-1 stimulated insulin secretion: A DIRECT study. PLoS ONE, 2018, 13, e0189886.	2.5	9
16	Human Pancreatic β Cell IncRNAs Control Cell-Specific Regulatory Networks. Cell Metabolism, 2017, 25, 400-411.	16.2	195
17	Insights into beta cell regeneration for diabetes via integration of molecular landscapes in human insulinomas. Nature Communications, 2017, 8, 767.	12.8	67
18	A Loss-of-Function Splice Acceptor Variant in <i>IGF2</i> Is Protective for Type 2 Diabetes. Diabetes, 2017, 66, 2903-2914.	0.6	52

#	Article	IF	CITATIONS
19	The <i>cis</i> â€regulatory switchboard of pancreatic ductal cancer. EMBO Journal, 2016, 35, 558-560.	7.8	2
20	Beta Cell Hubs Dictate Pancreatic Islet Responses toÂGlucose. Cell Metabolism, 2016, 24, 389-401.	16.2	370
21	Can Insulin Production Suppress \hat{l}^2 Cell Growth?. Cell Metabolism, 2016, 23, 4-5.	16.2	4
22	Transancestral fine-mapping of four type 2 diabetes susceptibility loci highlights potential causal regulatory mechanisms. Human Molecular Genetics, 2016, 25, 2070-2081.	2.9	21
23	<i>l²linc1</i> encodes a long noncoding RNA that regulates islet l²-cell formation and function. Genes and Development, 2016, 30, 502-507.	5.9	125
24	Transcriptional enhancers: functional insights and role in human disease. Current Opinion in Genetics and Development, 2015, 33, 71-76.	3.3	35
25	The FOXP1, FOXP2 and FOXP4 transcription factors are required for islet alpha cell proliferation and function in mice. Diabetologia, 2015, 58, 1836-1844.	6.3	41
26	Characterization of pancreatic NMDA receptors as possible drug targets for diabetes treatment. Nature Medicine, 2015, 21, 363-372.	30.7	126
27	Cell Cycle–Dependent Differentiation Dynamics Balances Growth and Endocrine Differentiation in the Pancreas. PLoS Biology, 2015, 13, e1002111.	5.6	53
28	TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors. Nature Cell Biology, 2015, 17, 615-626.	10.3	188
29	Weaning Gives \hat{I}^2 Cells License to Regenerate. Developmental Cell, 2015, 32, 531-532.	7.0	2
30	The zinc transporter ZIP12 regulates the pulmonary vascular response to chronic hypoxia. Nature, 2015, 524, 356-360.	27.8	113
31	Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nature Genetics, 2015, 47, 1415-1425.	21.4	365
32	Selective disruption of Tcf7l2 in the pancreatic β cell impairs secretory function and lowers β cell mass. Human Molecular Genetics, 2015, 24, 1390-1399.	2.9	89
33	Lineage fate of ductular reactions in liver injury and carcinogenesis. Journal of Clinical Investigation, 2015, 125, 2445-2457.	8.2	131
34	<i>GATA4</i> Mutations Are a Cause of Neonatal and Childhood-Onset Diabetes. Diabetes, 2014, 63, 2888-2894.	0.6	108
35	Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis. Nature Genetics, 2014, 46, 61-64.	21.4	255
36	Transient cytokine treatment induces acinar cell reprogramming and regenerates functional beta cell mass in diabetic mice. Nature Biotechnology, 2014, 32, 76-83.	17.5	159

#	Article	IF	CITATIONS
37	The chromatin regulator Brg1 suppresses formation of intraductal papillary mucinous neoplasm and pancreatic ductal adenocarcinoma. Nature Cell Biology, 2014, 16, 255-267.	10.3	172
38	Argonaute2 Mediates Compensatory Expansion of the Pancreatic β Cell. Cell Metabolism, 2014, 19, 122-134.	16.2	139
39	Adult Duct-Lining Cells Can Reprogram into β-like Cells Able to Counter Repeated Cycles of Toxin-Induced Diabetes. Developmental Cell, 2013, 26, 86-100.	7.0	173
40	Canonical Notch2 signaling determines biliary cell fates of embryonic hepatoblasts and adult hepatocytes independent of Hes1. Hepatology, 2013, 57, 2469-2479.	7.3	85
41	The miRNA Profile of Human Pancreatic Islets and Beta-Cells and Relationship to Type 2 Diabetes Pathogenesis. PLoS ONE, 2013, 8, e55272.	2.5	178
42	GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nature Genetics, 2012, 44, 20-22.	21.4	249
43	Human β Cell Transcriptome Analysis Uncovers IncRNAs That Are Tissue-Specific, Dynamically Regulated, and Abnormally Expressed in Type 2 Diabetes. Cell Metabolism, 2012, 16, 435-448.	16.2	410
44	Plasticity of Adult Human Pancreatic Duct Cells by Neurogenin3-Mediated Reprogramming. PLoS ONE, 2012, 7, e37055.	2.5	54
45	Glucose as a Mitogenic Hormone. Cell Metabolism, 2011, 13, 357-358.	16.2	6
46	Removing the Brakes on Cell Identity. Developmental Cell, 2011, 20, 411-412.	7.0	5
47	Mapping Open Chromatin with Formaldehyde-Assisted Isolation of Regulatory Elements. Methods in Molecular Biology, 2011, 791, 287-296.	0.9	12
48	A map of open chromatin in human pancreatic islets. Nature Genetics, 2010, 42, 255-259.	21.4	515
49	Family and Population-Based Studies of Variation within the Ghrelin Receptor Locus in Relation to Measures of Obesity. PLoS ONE, 2010, 5, e10084.	2.5	18
50	Recessive mutations in the <i>INS</i> gene result in neonatal diabetes through reduced insulin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3105-3110.	7.1	185
51	Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing beta-cells to adopt a neural gene activity program. Genome Research, 2010, 20, 722-732.	5.5	146
52	EuroDia: a beta-cell gene expression resource. Database: the Journal of Biological Databases and Curation, 2010, 2010, baq024-baq024.	3.0	9
53	Epistasis of Transcriptomes Reveals Synergism between Transcriptional Activators Hnf1α and Hnf4α. PLoS Genetics, 2010, 6, e1000970.	3.5	47
54	Functional Targets of the Monogenic Diabetes Transcription Factors HNF-1α and HNF-4α Are Highly Conserved Between Mice and Humans. Diabetes, 2009, 58, 1245-1253.	0.6	24

#	Article	IF	CITATIONS
55	Hnf1α (MODY3) Controls Tissue-Specific Transcriptional Programs and Exerts Opposed Effects on Cell Growth in Pancreatic Islets and Liver. Molecular and Cellular Biology, 2009, 29, 2945-2959.	2.3	122
56	Pancreatic Exocrine Duct Cells Give Rise to Insulin-Producing β Cells during Embryogenesis but Not after Birth. Developmental Cell, 2009, 17, 849-860.	7.0	428
57	PDX1 Deficiency Causes Mitochondrial Dysfunction and Defective Insulin Secretion through TFAM Suppression. Cell Metabolism, 2009, 10, 110-118.	16.2	102
58	Targeted Deficiency of the Transcriptional Activator Hnf1α Alters Subnuclear Positioning of Its Genomic Targets. PLoS Genetics, 2008, 4, e1000079.	3.5	18
59	Distinct Roles of HNF1 Β , HNF1 α , and HNF4 α in Regulating Pancreas Development, Β -Cell Function and Growth. Endocrine Development, 2007, 12, 33-45.	1.3	101
60	Macrosomia and Hyperinsulinaemic Hypoglycaemia in Patients with Heterozygous Mutations in the HNF4A Gene. PLoS Medicine, 2007, 4, e118.	8.4	349
61	Putting pancreatic cell plasticity to the test. Journal of Clinical Investigation, 2007, 117, 859-862.	8.2	4
62	The Transcription Factor Hepatocyte Nuclear Factor-6 Controls the Development of Pancreatic Ducts in the Mouse. Gastroenterology, 2006, 130, 532-541.	1.3	131
63	A Conditional Model Reveals That Induction of Hepatocyte Nuclear Factor-1Â in Hnf1Â-Null Mutant Â-Cells Can Activate Silenced Genes Postnatally, Whereas Overexpression Is Deleterious. Diabetes, 2006, 55, 2202-2211.	0.6	22
64	A Novel -192c/g Mutation in the Proximal P2 Promoter of the Hepatocyte Nuclear Factor-4Â Gene (HNF4A) Associates With Late-Onset Diabetes. Diabetes, 2006, 55, 1869-1873.	0.6	12
65	Hnf6 and Tcf2 (MODY5) are linked in a gene network operating in a precursor cell domain of the embryonic pancreas. Human Molecular Genetics, 2003, 12, 3307-3314.	2.9	139
66	Hepatic Nuclear Factor 1-α Directs Nucleosomal Hyperacetylation to Its Tissue-Specific Transcriptional Targets. Molecular and Cellular Biology, 2001, 21, 3234-3243.	2.3	124
67	Regulated Expression of Adenosine Triphosphate-Sensitive Potassium Channel Subunits in Pancreatic Â-Cells. Endocrinology, 2001, 142, 129-138.	2.8	17
68	Molecular cloning and expression of novel sulphotransferase-like cDNAs from human and rat brain. Biochemical Journal, 2000, 346, 857.	3.7	33
69	Early-onset type-ll diabetes mellitus (MODY4) linked to IPF1. Nature Genetics, 1997, 17, 138-139.	21.4	849
70	Pancreatic Islet Cells Express a Family of Inwardly Rectifying K+ Channel Subunits Which Interact to Form G-protein-activated Channels. Journal of Biological Chemistry, 1995, 270, 26086-26091.	3.4	72