
Christian R Petersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3776337/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mid-infrared supercontinuum covering the 1.4–13.3â€Î¼m molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nature Photonics, 2014, 8, 830-834.	15.6	811
2	Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. Optics Express, 2015, 23, 3282.	1.7	193
3	Real-time high-resolution mid-infrared optical coherence tomography. Light: Science and Applications, 2019, 8, 11.	7.7	182
4	Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source. Optics Letters, 2018, 43, 999.	1.7	150
5	Thulium pumped mid-infrared 09–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers. Optics Express, 2014, 22, 3959.	1.7	126
6	Towards a table-top synchrotron based on supercontinuum generation. Infrared Physics and Technology, 2018, 91, 182-186.	1.3	91
7	Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers. Optics Express, 2017, 25, 15336.	1.7	86
8	Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber. Scientific Reports, 2019, 9, 4446.	1.6	78
9	Spectral-temporal composition matters when cascading supercontinua into the mid-infrared. Optics Express, 2016, 24, 749.	1.7	63
10	Direct nanoimprinting of moth-eye structures in chalcogenide glass for broadband antireflection in the mid-infrared. Optica, 2018, 5, 557.	4.8	58
11	High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650-1850 nm region. Biomedical Optics Express, 2018, 9, 1762.	1.5	45
12	All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region. Photoacoustics, 2020, 18, 100163.	4.4	45
13	Power stable 1.5–10.5  µm cascaded mid-infrared supercontinuum laser without thulium amplifier. Optics Letters, 2021, 46, 1129.	1.7	35
14	Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation. JPhys Photonics, 2019, 1, 044003.	2.2	30
15	In-amplifier and cascaded mid-infrared supercontinuum sources with low noise through gain-induced soliton spectral alignment. Scientific Reports, 2020, 10, 8230.	1.6	24
16	Mid-IR supercontinuum generation in birefringent, low loss, ultra-high numerical aperture Ge-As-Se-Te chalcogenide step-index fiber. Optical Materials Express, 2019, 9, 2617.	1.6	24
17	Ge ₂₂ As ₂₀ Se ₅₈ glass ultrafast laser inscribed waveguides for mid-IR integrated optics. Optical Materials Express, 2018, 8, 1001.	1.6	18
18	Refractive index and dispersion control of ultrafast laser inscribed waveguides in gallium lanthanum sulphide for near and mid-infrared applications. Optics Express, 2016, 24, 6350.	1.7	15

CHRISTIAN R PETERSEN

#	Article	IF	CITATIONS
19	Nanoimprinting and tapering of chalcogenide photonic crystal fibers for cascaded supercontinuum generation. Optics Letters, 2019, 44, 5505.	1.7	15
20	Thermally tunable dispersion modulation in a chalcogenide-based hybrid optical fiber. Optics Letters, 2021, 46, 2533.	1.7	12
21	Non-Destructive Subsurface Inspection of Marine and Protective Coatings Using Near- and Mid-Infrared Optical Coherence Tomography. Coatings, 2021, 11, 877.	1.2	9
22	Ultra-broadband infrared gas sensor for pollution detection: the TRIAGE project. JPhys Photonics, 2021, 3, 031003.	2.2	8
23	High-resolution mid-infrared optical coherence tomography with kHz line rate. Optics Letters, 2021, 46, 4558.	1.7	8
24	GLS and GLSSe ultrafast laser inscribed waveguides for mid-IR supercontinuum generation. Optical Materials Express, 2019, 9, 643.	1.6	8
25	Graded Index Chalcogenide Fibers with Nanostructured Core. Advanced Photonics Research, 2021, 2, 2000091.	1.7	6
26	Influence of pulse duration and repetition rate on mid-infrared cascaded supercontinuum. Optics Letters, 2020, 45, 5161.	1.7	4
27	Numerical observation of SPM rogue waves in normal dispersion cascaded supercontinuum generation. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 2754.	0.9	3
28	Non-Contact Paper Thickness and Quality Monitoring Based on Mid-Infrared Optical Coherence Tomography and THz Time Domain Spectroscopy. Sensors, 2022, 22, 1549.	2.1	3
29	Supercontinuum based mid-infrared OCT, spectroscopy, and hyperspectral imaging. , 2021, , .		2
30	Supercontinuum Laser for Spectroscopic Photoacoustic Imaging of Lipids in the Extended Near-Infrared Region. , 2018, , .		1
31	Influence of Thermo-Mechanical Mismatch when Nanoimprinting Anti-Reflective Structures onto Small-core Mid-IR Chalcogenide Fibers. , 2021, , .		0
32	Mid-infrared optical coherent tomography: non-destructive testing of ceramics and plastics. , 2019, , .		0
33	Long Wavelength Mid-Infrared Supercontinuum Source. , 2020, , .		0
34	Mid-infrared supercontinuum generation. , 2022, , 685-741.		0

34 Mid-infrared supercontinuum generation. , 2022, , 685-741.