Megan A Rúa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3776099/publications.pdf

Version: 2024-02-01

29	805	15	23
papers	citations	h-index	g-index
30	30	30	1312
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Characterizing Ectomycorrhizal Fungal Community Structure and Function of Two Varieties of Pinus clausa That Differ in Disturbance History. Forests, 2021, 12, 219.	2.1	2
2	The Missing Metric: An Evaluation of Fungal Importance in Wetland Assessments. Wetlands, 2020, 40, 825-838.	1.5	10
3	White-tailed deer and an invasive shrub facilitate faster carbon cycling in a forest ecosystem. Forest Ecology and Management, 2019, 448, 104-111.	3.2	12
4	Coinfections by noninteracting pathogens are not independent and require new tests of interaction. PLoS Biology, 2019, 17, e3000551.	5.6	26
5	Coinfections by noninteracting pathogens are not independent and require new tests of interaction., 2019, 17, e3000551.		0
6	Coinfections by noninteracting pathogens are not independent and require new tests of interaction., 2019, 17, e3000551.		0
7	Coinfections by noninteracting pathogens are not independent and require new tests of interaction., 2019, 17, e3000551.		0
8	Coinfections by noninteracting pathogens are not independent and require new tests of interaction., 2019, 17, e3000551.		0
9	Coinfections by noninteracting pathogens are not independent and require new tests of interaction., 2019, 17, e3000551.		0
10	Coinfections by noninteracting pathogens are not independent and require new tests of interaction., 2019, 17, e3000551.		0
11	Accounting for local adaptation in ectomycorrhizas: a call to track geographical origin of plants, fungi, and soils in experiments. Mycorrhiza, 2018, 28, 187-195.	2.8	9
12	Tree species with limited geographical ranges show extreme responses to ectomycorrhizas. Global Ecology and Biogeography, 2018, 27, 839-848.	5.8	16
13	Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Communications Biology, 2018, 1, 116.	4.4	70
14	Modeling Virus Coinfection to Inform Management of Maize Lethal Necrosis in Kenya. Phytopathology, 2017, 107, 1095-1108.	2.2	41
15	Associations between Ectomycorrhizal Fungi and Bacterial Needle Endophytes in Pinus radiata: Implications for Biotic Selection of Microbial Communities. Frontiers in Microbiology, 2016, 7, 399.	3.5	21
16	Home-field advantage? evidence of local adaptation among plants, soil, and arbuscular mycorrhizal fungi through meta-analysis. BMC Evolutionary Biology, 2016, 16, 122.	3.2	148
17	MycoDB, a global database of plant response to mycorrhizal fungi. Scientific Data, 2016, 3, 160028.	5.3	90
18	Rapid evolution of a consumer stoichiometric trait destabilizes consumer–producer dynamics. Oikos, 2015, 124, 960-969.	2.7	29

#	Article	lF	CITATION
19	Viral pathogen production in a wild grass host driven by host growth and soil nitrogen. New Phytologist, 2015, 207, 760-768.	7.3	27
20	The Implications of HIV Treatment on the HIV-Malaria Coinfection Dynamics: A Modeling Perspective. BioMed Research International, 2015, 2015, 1-14.	1.9	14
21	Ectomycorrhizal Fungal Communities and Enzymatic Activities Vary across an Ecotone between a Forest and Field. Journal of Fungi (Basel, Switzerland), 2015, 1, 185-210.	3.5	15
22	Resource availability determines stability for mutualist–pathogen–host interactions. Theoretical Ecology, 2015, 8, 133-148.	1.0	9
23	Why Is Living Fast Dangerous? Disentangling the Roles of Resistance and Tolerance of Disease. American Naturalist, 2014, 184, 172-187.	2.1	32
24	Climate drivers, host identity and fungal endophyte infection determine virus prevalence in a grassland ecosystem. Journal of Ecology, 2014, 102, 690-699.	4.0	17
25	Elevated <scp>CO</scp> ₂ spurs reciprocal positive effects between a plant virus and an arbuscular mycorrhizal fungus. New Phytologist, 2013, 199, 541-549.	7.3	36
26	Fungal endophyte infection and host genetic background jointly modulate host response to an aphidâ€transmitted viral pathogen. Journal of Ecology, 2013, 101, 1007-1018.	4.0	31
27	The role of viruses in biological invasions: friend or foe?. Current Opinion in Virology, 2011, 1, 68-72.	5.4	20
28	Geographic variation in a facultative mutualism: consequences for local arthropod composition and diversity. Oecologia, 2010, 163, 985-996.	2.0	14
29	A fungus among us: broad patterns of endophyte distribution in the grasses. Ecology, 2009, 90, 1531-1539.	3.2	113