
Xaralabos Varelas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3775686/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibition of LSD1 Attenuates Oral Cancer Development and Promotes Therapeutic Efficacy of Immune Checkpoint Blockade and YAP/TAZ Inhibition. Molecular Cancer Research, 2022, 20, 712-721.	3.4	12
2	Epithelial LIF signaling limits apoptosis and lung injury during bacterial pneumonia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L550-L563.	2.9	5
3	Obesity-induced senescent macrophages activate a fibrotic transcriptional program in adipocyte progenitors. Life Science Alliance, 2022, 5, e202101286.	2.8	20
4	Inactivation of the Hippo tumor suppressor pathway promotes melanoma. Nature Communications, 2022, 13, .	12.8	10
5	ZNF416 is a pivotal transcriptional regulator of fibroblast mechanoactivation. Journal of Cell Biology, 2021, 220, .	5.2	23
6	Aberrant epithelial polarity cues drive the development of precancerous airway lesions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
7	Gene expression alterations in salivary gland epithelia of Sjögren's syndrome patients are associated with clinical and histopathological manifestations. Scientific Reports, 2021, 11, 11154.	3.3	9
8	Abstract 2434: Transcriptional crosstalk between YAP, TEAD and TP63 is associated with early lung carcinogenesis. , 2021, , .		0
9	Yap/Taz inhibit goblet cell fate to maintain lung epithelial homeostasis. Cell Reports, 2021, 36, 109347.	6.4	24
10	Patient-specific iPSCs carrying an SFTPC mutation reveal the intrinsic alveolar epithelial dysfunction at the inception of interstitial lung disease. Cell Reports, 2021, 36, 109636.	6.4	48
11	The Hsp70–Bag3 complex modulates the phosphorylation and nuclear translocation of Hippo pathway protein Yap. Journal of Cell Science, 2021, 134, .	2.0	7
12	Actionable Cytopathogenic Host Responses of Human Alveolar Type 2 Cells to SARS-CoV-2. Molecular Cell, 2020, 80, 1104-1122.e9.	9.7	94
13	The Tumor Suppressor CYLD Inhibits Mammary Epithelial to Mesenchymal Transition by the Coordinated Inhibition of YAP/TAZ and TGFÎ ² Signaling. Cancers, 2020, 12, 2047.	3.7	10
14	Naturally occurring hotspot cancer mutations in Gα13 promote oncogenic signaling. Journal of Biological Chemistry, 2020, 295, 16897-16904.	3.4	19
15	Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nature Reviews Drug Discovery, 2020, 19, 480-494.	46.4	396
16	The in vivo genetic program of murine primordial lung epithelial progenitors. Nature Communications, 2020, 11, 635.	12.8	46
17	Yap suppresses T-cell function and infiltration in the tumor microenvironment. PLoS Biology, 2020, 18, e3000591.	5.6	58
18	Loss of G-Protein Pathway Suppressor 2 Promotes Tumor Growth Through Activation of AKT Signaling. Frontiers in Cell and Developmental Biology, 2020, 8, 608044.	3.7	10

XARALABOS VARELAS

#	Article	IF	CITATIONS
19	Lung Atelectasis Promotes Immune and Barrier Dysfunction as Revealed by Transcriptome Sequencing in Female Sheep. Anesthesiology, 2020, 133, 1060-1076.	2.5	7
20	Selective YAP/TAZ inhibition in fibroblasts via dopamine receptor D1 agonism reverses fibrosis. Science Translational Medicine, 2019, 11, .	12.4	134
21	TGFβ-induced fibroblast activation requires persistent and targeted HDAC-mediated gene repression. Journal of Cell Science, 2019, 132, .	2.0	40
22	CaDrA: A Computational Framework for Performing Candidate Driver Analyses Using Genomic Features. Frontiers in Genetics, 2019, 10, 121.	2.3	6
23	TAZ Forces Lateral Inhibition. Developmental Cell, 2019, 48, 748-750.	7.0	0
24	Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis. Scientific Reports, 2019, 9, 16904.	3.3	4
25	Immunofluorescence Microscopy to Study Endogenous TAZ in Mammalian Cells. Methods in Molecular Biology, 2019, 1893, 107-113.	0.9	4
26	Glutamineâ€utilizing transaminases are a metabolic vulnerability of TAZ/YAPâ€activated cancer cells. EMBO Reports, 2018, 19, .	4.5	70
27	Therapeutic Targeting of TAZ and YAP byÂDimethyl Fumarate in Systemic SclerosisÂFibrosis. Journal of Investigative Dermatology, 2018, 138, 78-88.	0.7	83
28	Phosphatidic Acid Signals via the Hippo Pathway. Molecular Cell, 2018, 72, 205-206.	9.7	3
29	Functional and genomic analyses reveal therapeutic potential of targeting β-catenin/CBP activity in head and neck cancer. Genome Medicine, 2018, 10, 54.	8.2	43
30	Hsp70–Bag3 complex is a hub for proteotoxicity-induced signaling that controls protein aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7043-E7052.	7.1	55
31	TAZ activation drives fibroblast spheroid growth, expression of profibrotic paracrine signals, and context-dependent ECM gene expression. American Journal of Physiology - Cell Physiology, 2017, 312, C277-C285.	4.6	73
32	Integrinâ€FAKâ€CDC42â€₱P1A signaling gnaws at YAP/TAZ activity to control incisor stem cells. BioEssays, 2017, 39, 1700116.	2.5	20
33	Targeted apoptosis of myofibroblasts with the BH3 mimetic ABT-263 reverses established fibrosis. Science Translational Medicine, 2017, 9, .	12.4	155
34	Arterial stiffness induces remodeling phenotypes in pulmonary artery smooth muscle cells via YAP/TAZ-mediated repression of cyclooxygenase-2. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L628-L647.	2.9	55
35	Expression of Piwi protein MIWI2 defines a distinct population of multiciliated cells. Journal of Clinical Investigation, 2017, 127, 3866-3876.	8.2	14
36	Inhibition of LSD1 epigenetically attenuates oral cancer growth and metastasis. Oncotarget, 2017, 8, 73372-73386.	1.8	43

XARALABOS VARELAS

#	Article	IF	CITATIONS
37	The Hippo pathway effector YAP is an essential regulator of ductal progenitor patterning in the mouse submandibular gland. ELife, 2017, 6, .	6.0	37
38	Systematic morphological profiling of human gene and allele function via Cell Painting. ELife, 2017, 6, .	6.0	129
39	Altered RNA editing in $3\hat{a}\in^2$ UTR perturbs microRNA-mediated regulation of oncogenes and tumor-suppressors. Scientific Reports, 2016, 6, 23226.	3.3	77
40	Notch3-Jagged signaling controls the pool of undifferentiated airway progenitors. Development (Cambridge), 2015, 142, 258-267.	2.5	151
41	Distinct Polarity Cues Direct Taz/Yap and TGFβ Receptor Localization to Differentially Control TGFβ-Induced Smad Signaling. Developmental Cell, 2015, 32, 652-656.	7.0	69
42	A YAP/TAZ-Regulated Molecular Signature Is Associated with Oral Squamous Cell Carcinoma. Molecular Cancer Research, 2015, 13, 957-968.	3.4	107
43	Crumbs3-Mediated Polarity Directs Airway Epithelial Cell Fate through the Hippo Pathway Effector Yap. Developmental Cell, 2015, 34, 283-296.	7.0	130
44	Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L344-L357.	2.9	570
45	A YAP/TAZâ€Regulated Transcriptional Signature Associated with Oral Squamous Cell Carcinoma. FASEB Journal, 2015, 29, LB124.	0.5	Ο
46	The Hippo Pathway Effectors TAZ/YAP Regulate Dicer Expression and MicroRNA Biogenesis through Let-7. Journal of Biological Chemistry, 2014, 289, 1886-1891.	3.4	91
47	The Hippo Pathway Effector Yap Controls Patterning and Differentiation of Airway Epithelial Progenitors. Developmental Cell, 2014, 30, 137-150.	7.0	203
48	The Transcriptional Regulators TAZ and YAP Direct Transforming Growth Factor β-induced Tumorigenic Phenotypes in Breast Cancer Cells. Journal of Biological Chemistry, 2014, 289, 13461-13474.	3.4	202
49	Protein N-glycosylation in oral cancer: Dysregulated cellular networks among DPAGT1, E-cadherin adhesion and canonical Wnt signaling. Glycobiology, 2014, 24, 579-591.	2.5	39
50	The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development (Cambridge), 2014, 141, 1614-1626.	2.5	514
51	YAP and TAZ drive matrix stiffnessâ€dependent fibroblast activation (1180.6). FASEB Journal, 2014, 28, 1180.6.	0.5	1
52	N-Glycosylation Induces the CTHRC1 Protein and Drives Oral Cancer Cell Migration. Journal of Biological Chemistry, 2013, 288, 20217-20227.	3.4	58
53	Switch Enhancers Interpret TGF-β and Hippo Signaling to Control Cell Fate in Human Embryonic Stem Cells. Cell Reports, 2013, 5, 1611-1624.	6.4	250

Non-canonical Roles for the Hippo Pathway. , 2013, , 327-346.

2

#	Article	IF	CITATIONS
55	Stem cell regulation by the Hippo pathway. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2323-2334.	2.4	67
56	The Hippo signaling pathway is required for salivary gland development and its dysregulation is associated with Sjogren's syndrome. Laboratory Investigation, 2013, 93, 1203-1218.	3.7	45
57	Integrating developmental signals: a Hippo in the (path)way. Oncogene, 2012, 31, 1743-1756.	5.9	107
58	Coordinating developmental signaling: novel roles for the Hippo pathway. Trends in Cell Biology, 2012, 22, 88-96.	7.9	93
59	An Allosteric Inhibitor of the Human Cdc34ÂUbiquitin-Conjugating Enzyme. Cell, 2011, 145, 1075-1087.	28.9	203
60	The Ubiquitin Binding Region of the Smurf HECT Domain Facilitates Polyubiquitylation and Binding of Ubiquitylated Substrates. Journal of Biological Chemistry, 2010, 285, 6308-6315.	3.4	63
61	The Hippo Pathway Regulates Wnt/β-Catenin Signaling. Developmental Cell, 2010, 18, 579-591.	7.0	490
62	The Crumbs Complex Couples Cell Density Sensing to Hippo-Dependent Control of the TGF-β-SMAD Pathway. Developmental Cell, 2010, 19, 831-844.	7.0	602
63	Phosphorylation of the Tumor Suppressor Fat Is Regulated by Its Ligand Dachsous and the Kinase Discs Overgrown. Current Biology, 2009, 19, 1112-1117.	3.9	93
64	TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nature Cell Biology, 2008, 10, 837-848.	10.3	576
65	The Cdc34/SCF Ubiquitination Complex Mediates Saccharomyces cerevisiae Cell Wall Integrity. Genetics, 2006, 174, 1825-1839.	2.9	12
66	Purification and Properties of the Ubiquitin onjugating Enzymes Cdc34 and Ubc13·Mms2. Methods in Enzymology, 2005, 398, 43-54.	1.0	2
67	Cdc34 Self-Association Is Facilitated by Ubiquitin Thiolester Formation and Is Required for Its Catalytic Activity. Molecular and Cellular Biology, 2003, 23, 5388-5400.	2.3	48