
MarÃa Elena De Cos GÓmez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3775465/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reducing the radar cross section while maintaining the performance of a coplanar waveguide-fed antenna with an absorptive metasurface. Journal Physics D: Applied Physics, 2021, 54, 075302.	1.3	1
2	Paving the Way for Suitable Metasurfaces' Measurements Under Oblique Incidence: Mono-/Bistatic and Near-/Far-Field Concerns. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 1737-1744.	2.4	16
3	Paving the Way to Eco-Friendly IoT Antennas: Tencel-Based Ultra-Thin Compact Monopole and Its Applications to ZigBee. Sensors, 2020, 20, 3658.	2.1	12
4	On the Broadening of Single-Layer Metasurface Bandwidth by Coupling Resonances. Materials, 2020, 13, 2063.	1.3	4
5	Zirconia-Based Ultra-Thin Compact Flexible CPW-Fed Slot Antenna for IoT. Sensors, 2019, 19, 3134.	2.1	14
6	AMC's Angular Stability Improvement Through the Introduction of Lumped Components. IEEE Antennas and Wireless Propagation Letters, 2018, 17, 813-816.	2.4	9
7	Enhancing the angular stability of artificial magnetic conductors through lumped inductors. Sensors and Actuators A: Physical, 2018, 272, 223-230.	2.0	2
8	A received signal strength RFID-based indoor location system. Sensors and Actuators A: Physical, 2017, 255, 118-133.	2.0	37
9	Antenna Diagnostics and Characterization Using Unmanned Aerial Vehicles. IEEE Access, 2017, 5, 23563-23575.	2.6	88
10	Angular Stability of Metasurfaces: Challenges Regarding Reflectivity Measurements [Measurements Corner]. IEEE Antennas and Propagation Magazine, 2016, 58, 74-81.	1.2	33
11	A Thin C-Band Polarization and Incidence Angle-Insensitive Metamaterial Perfect Absorber. Materials, 2015, 8, 1666-1681.	1.3	26
12	A Six-Fold Symmetric Metamaterial Absorber. Materials, 2015, 8, 1590-1603.	1.3	18
13	On the advantages of loop-based unit-cell's metallization regarding the angular stability of artificial magnetic conductors. Applied Physics A: Materials Science and Processing, 2015, 118, 699-708.	1.1	26
14	Potential advantages of hexagonal-shaped over square-shaped unit-cells metallizations regarding the angular stability of Artificial Magnetic Conductors. , 2014, , .		0
15	Behavioral study of a CPW-fed dual-band antenna combined with a polarization dependent AMC. , 2014, , .		0
16	Reduced size C-band band-pass filter with 2 nd harmonic suppression. , 2014, , .		2
17	Small sized uniplanar artificial magnetic conductor. , 2014, , .		0
18	Novel Miniaturized Artificial Magnetic Conductor. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 174-177.	2.4	42

MarÃA Elena De Cos GÓmez

#	Article	IF	CITATIONS
19	Polypropylene-Based Dual-Band CPW-Fed Monopole Antenna [Antenna Applications Corner]. IEEE Antennas and Propagation Magazine, 2013, 55, 264-273.	1.2	38
20	A Compact Band-Pass Filter with High Selectivity and Second Harmonic Suppression. Materials, 2013, 6, 5613-5624.	1.3	7
21	Dualâ€band coplanar waveguideâ€fed smiling monopole antenna for WiFi and 4G longâ€term evolution applications. IET Microwaves, Antennas and Propagation, 2013, 7, 777-782.	0.7	21
22	UHF Dipole-AMC Combination for RFID Applications. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 1041-1044.	2.4	34
23	Novel uniplanar flexible Artificial Magnetic Conductor. Applied Physics A: Materials Science and Processing, 2012, 109, 1031-1035.	1.1	5
24	Dual-band textile hexagonal artificial magnetic conductor for WiFi wearable applications. , 2012, , .		13
25	Reply to "Comments on "Novel Broadband Artificial Magnetic Conductor With Hexagonal Unit Cellâ€â€• IEEE Antennas and Wireless Propagation Letters, 2012, 11, 1718-1719.	2.4	0
26	CPW-fed Bow-tie slot antenna/AMC combination for dual-band applications on metallic objects. , 2012, ,		1
27	Bandwidth enhancement through coupling microstrip patch antenna and electromagnetic band-gap resonances. , 2012, , .		1
28	CPW-fed monopole/EBG combination with bandwidth enhancement for dual-band applications. , 2012, , .		1
29	On the bandwidth enhancement of patch antenna using EBG/AMC structures. , 2012, , .		5
30	Dual-Band Uniplanar CPW-Fed Monopole/EBG Combination With Bandwidth Enhancement. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 365-368.	2.4	17
31	Novel Flexible Artificial Magnetic Conductor. International Journal of Antennas and Propagation, 2012, 2012, 1-7.	0.7	6
32	Dual-Band Antenna/AMC Combination for RFID. International Journal of Antennas and Propagation, 2012, 2012, 1-7.	0.7	2
33	High-Performance Computational Electromagnetic Methods Applied to the Design of Patch Antenna with EBG Structure. International Journal of Antennas and Propagation, 2012, 2012, 1-5.	0.7	0
34	Microstrip Patch Antenna Bandwidth Enhancement Using AMC/EBG Structures. International Journal of Antennas and Propagation, 2012, 2012, 1-6.	0.7	39
35	Novel Broadband Artificial Magnetic Conductor With Hexagonal Unit Cell. IEEE Antennas and Wireless Propagation Letters, 2011, 10, 615-618.	2.4	40
36	ON THE INFLUENCE OF COUPLING AMC RESONANCES FOR RCS REDUCTION IN THE SHF BAND. Progress in Electromagnetics Research, 2011, 117, 103-119.	1.6	28

MarÃa Elena De Cos GÓmez

#	Article	IF	CITATIONS
37	Novel bow-tie antenna on artificial magnetic conductor for 5.8â€GHz radio frequency identification tags usable with metallic objects. IET Microwaves, Antennas and Propagation, 2011, 5, 1097.	0.7	22
38	Enhancing patch antenna bandwidth by means of uniplanar EBGâ€AMC. Microwave and Optical Technology Letters, 2011, 53, 1372-1377.	0.9	17
39	Evaluation of an RSS-based indoor location system. Sensors and Actuators A: Physical, 2011, 167, 110-116.	2.0	24
40	Novel Received Signal Strength-Based Indoor Location System: Development and Testing. Eurasip Journal on Wireless Communications and Networking, 2010, 2010, .	1.5	13
41	Novel SHF-Band Uniplanar Artificial Magnetic Conductor. IEEE Antennas and Wireless Propagation Letters, 2010, 9, 44-47.	2.4	41
42	RCS Measurement Setup for Periodic-Structure Prototype Characterization. IEEE Antennas and Propagation Magazine, 2010, 52, 100-106.	1.2	20
43	Novel Bow-tie–AMC Combination for 5.8-GHz RFID Tags Usable With Metallic Objects. IEEE Antennas and Wireless Propagation Letters, 2010, 9, 1217-1220.	2.4	26
44	A NOVEL APPROACH FOR RCS REDUCTION USING A COMBINATION OF ARTIFICIAL MAGNETIC CONDUCTORS. Progress in Electromagnetics Research, 2010, 107, 147-159.	1.6	91
45	Planar Artificial Magnetic Conductor: Design and Characterization Setup in the RFID SHF Band. Journal of Electromagnetic Waves and Applications, 2009, 23, 1467-1478.	1.0	24
46	Design of Planar Artificial Magnetic Conductor Ground Plane Using Frequency-Selective Surfaces for Frequencies Below 1 GHz. IEEE Antennas and Wireless Propagation Letters, 2009, 8, 951-954.	2.4	57
47	Full-wave-based location system method evaluation. , 2009, , .		4
48	Envelope Transient Analysis of Self-Oscillating Mixers. IEEE Transactions on Microwave Theory and Techniques, 2004, 52, 1090-1100.	2.9	31
49	Nonlinear analysis tools for the optimized design of harmonic-injection dividers. IEEE Transactions on Microwave Theory and Techniques, 2003, 51, 1752-1762.	2.9	61
50	Troubleshooting RFID Tags Problems with Metallic Objects Using Metamaterials. , 0, , .		2