
Jiacheng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3775448/publications.pdf Version: 2024-02-01

LIACHENC WANC

#	Article	IF	CITATIONS
1	KOH activation of carbon-based materials for energy storage. Journal of Materials Chemistry, 2012, 22, 23710.	6.7	2,127
2	KOH activation of biomass-derived nitrogen-doped carbons forÂsupercapacitor and electrocatalytic oxygen reduction. Electrochimica Acta, 2018, 261, 49-57.	2.6	345
3	Fungi-based porous carbons for CO2 adsorption and separation. Journal of Materials Chemistry, 2012, 22, 13911.	6.7	204
4	A Glassâ€Ceramic with Accelerated Surface Reconstruction toward the Efficient Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2021, 60, 3773-3780.	7.2	164
5	Creation of Triple Hierarchical Micro-Meso-Macroporous N-doped Carbon Shells with Hollow Cores Toward the Electrocatalytic Oxygen Reduction Reaction. Nano-Micro Letters, 2018, 10, 3.	14.4	99
6	Partialâ€ S ingleâ€Atom, Partialâ€Nanoparticle Composites Enhance Water Dissociation for Hydrogen Evolution. Advanced Science, 2021, 8, 2001881.	5.6	85
7	Hierarchical N-Doped Porous Carbons for Zn–Air Batteries and Supercapacitors. Nano-Micro Letters, 2020, 12, 20.	14.4	73
8	Mesoporous Ternary Nitrides of Earth-Abundant Metals as Oxygen Evolution Electrocatalyst. Nano-Micro Letters, 2020, 12, 79.	14.4	63
9	Ditungsten carbide nanoparticles encapsulated by ultrathin graphitic layers with excellent hydrogen-evolution electrocatalytic properties. Journal of Materials Chemistry A, 2016, 4, 8204-8210.	5.2	57
10	Three-dimensional interconnected nitrogen-doped mesoporous carbons as active electrode materials for application in electrocatalytic oxygen reduction and supercapacitors. Journal of Colloid and Interface Science, 2018, 527, 230-240.	5.0	56
11	Mechanochemical synthesis of multi-site electrocatalysts as bifunctional zinc–air battery electrodes. Journal of Materials Chemistry A, 2019, 7, 19355-19363.	5.2	53
12	Synthesis, characterization, and hydrogen storage capacities of hierarchical porous carbide derived carbon monolith. Journal of Materials Chemistry, 2012, 22, 23893.	6.7	50
13	Suppressing Dissolution of Ptâ€Based Electrocatalysts through the Electronic Metal–Support Interaction. Advanced Energy Materials, 2021, 11, 2101050.	10.2	50
14	Ultrafine WC nanoparticles anchored on co-encased, N-doped carbon nanotubes for efficient hydrogen evolution. Energy Storage Materials, 2017, 6, 104-111.	9.5	48
15	A bimetallic MOF@graphene oxide composite as an efficient bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. Dalton Transactions, 2020, 49, 5730-5735.	1.6	48
16	Three-Dimensional Mesoporous Phosphide–Spinel Oxide Heterojunctions with Dual Function as Catalysts for Overall Water Splitting. ACS Applied Energy Materials, 2020, 3, 1684-1693.	2.5	43
17	Interface Engineering with Ultralow Ruthenium Loading for Efficient Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 36177-36185.	4.0	35
18	One stone two birds: Vanadium doping as dual roles in self-reduced Pt clusters and accelerated water splitting. Journal of Energy Chemistry, 2022, 66, 493-501.	7.1	35

JIACHENG WANG

#	Article	IF	CITATIONS
19	Interface catalysis by Pt nanocluster@Ni ₃ N for bifunctional hydrogen evolution and oxygen evolution. Materials Chemistry Frontiers, 2020, 4, 2665-2672.	3.2	33
20	Surface decoration accelerates the hydrogen evolution kinetics of a perovskite oxide in alkaline solution. Energy and Environmental Science, 2020, 13, 4249-4257.	15.6	33
21	Holey Sheets of Interconnected Carbon-Coated Nickel Nitride Nanoparticles as Highly Active and Durable Oxygen Evolution Electrocatalysts. ACS Applied Energy Materials, 2018, 1, 6774-6780.	2.5	28
22	A Glassâ€Ceramic with Accelerated Surface Reconstruction toward the Efficient Oxygen Evolution Reaction. Angewandte Chemie, 2021, 133, 3817-3824.	1.6	28
23	Dual-doping of ruthenium and nickel into Co ₃ O ₄ for improving the oxygen evolution activity. Materials Chemistry Frontiers, 2020, 4, 1390-1396.	3.2	26
24	RuCo alloy trifunctional electrocatalysts with ratio-dependent activity for Zn–air batteries and self-powered water splitting. Chemical Communications, 2021, 57, 1498-1501.	2.2	25
25	Nanoheterostructures of Partially Oxidized RuNi Alloy as Bifunctional Electrocatalysts for Overall Water Splitting. ChemSusChem, 2020, 13, 2739-2744.	3.6	23
26	A phosphate semiconductor-induced built-in electric field boosts electron enrichment for electrocatalytic hydrogen evolution in alkaline conditions. Journal of Materials Chemistry A, 2021, 9, 13109-13114.	5.2	23
27	<i>In situ</i> growth of free-standing perovskite hydroxide electrocatalysts for efficient overall water splitting. Journal of Materials Chemistry A, 2020, 8, 5919-5926.	5.2	21
28	KOH activation of coal-derived microporous carbons for oxygen reduction and supercapacitors. RSC Advances, 2020, 10, 15707-15714.	1.7	21
29	Fe ₃ C cluster-promoted single-atom Fe, N doped carbon for oxygen-reduction reaction. Physical Chemistry Chemical Physics, 2020, 22, 7218-7223.	1.3	17
30	Caged-Cation-Induced Lattice Distortion in Bronze TiO ₂ for Cohering Nanoparticulate Hydrogen Evolution Electrocatalysts. ACS Nano, 2022, 16, 9920-9928.	7.3	17
31	A nitridation route to construct high-activity interfaces toward alkaline hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 11205-11212.	5.2	9
32	Spin engineering of single-site metal catalysts. Innovation(China), 2022, 3, 100268.	5.2	6
33	A multicolorâ€emitted phosphor for temperature sensing and multimode dynamic antiâ€counterfeiting. Journal of the American Ceramic Society, 2022, 105, 6241-6251.	1.9	5
34	Molten Salts–Assisted Fabrication of Fe, S, and N Coâ€Doped Carbon as Efficient Oxygen Reduction Reaction Catalyst. Energy Technology, 2020, 8, 1900896.	1.8	4
35	A facile synthesis of Ru/N–C as an efficient and cost-effective electrocatalyst for hydrogen evolution. New Journal of Chemistry, 2020, 44, 7962-7967.	1.4	4
36	Enhanced alkaline hydrogen evolution performance of ruthenium by synergetic doping of cobalt and phosphorus. Sustainable Energy and Fuels, 2020, 4, 4637-4643.	2.5	2