Wei Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3774928/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis, Microwave Electromagnetic, and Microwave Absorption Properties of Twin Carbon Nanocoils. Journal of Physical Chemistry C, 2008, 112, 19316-19323.	3.1	151
2	Aminoâ€Directed Rh ^{III} â€Catalyzed Cï£;H Activation Leading to Oneâ€Pot Synthesis of Nï£;H Carbazoles. Chemistry - A European Journal, 2013, 19, 1903-1907.	3.3	85
3	Preparation and Magnetic Properties of Barium Hexaferrite Nanoparticles Produced by the Citrate Process. Journal of the American Ceramic Society, 1997, 80, 3258-3262.	3.8	62
4	Controlling carbon monoxide binding at di-iron units related to the iron-only hydrogenase sub-site. Chemical Communications, 2008, , 606-608.	4.1	53
5	Polyimidazolium Salts: Robust Catalysts for the Cycloaddition of Carbon Dioxide into Carbonates in Solventâ€Free Conditions. ChemSusChem, 2017, 10, 2728-2735.	6.8	53
6	Diiron hexacarbonyl complexes bearing naphthalene-1,8-dithiolate bridge moiety as mimics of the sub-unit of [FeFe]-hydrogenase: synthesis, characterisation and electrochemical investigations. New Journal of Chemistry, 2015, 39, 9752-9760.	2.8	40
7	Iron(iii) complexes of multidentate pyridinyl ligands: synthesis, characterization and catalysis of the direct hydroxylation of benzene. Dalton Transactions, 2014, 43, 15337-15345.	3.3	34
8	Identifying Surface Active Sites of SnO ₂ : Roles of Surface O ₂ [–] , O ₂ ^{2–} Anions and Acidic Species Played for Toluene Deep Oxidation. Industrial & Engineering Chemistry Research, 2019, 58, 18569-18581.	3.7	32
9	Synthesis and characterization of copper(<scp>ii</scp>) complexes with multidentate ligands as catalysts for the direct hydroxylation of benzene to phenol. Dalton Transactions, 2015, 44, 8013-8020.	3.3	31
10	A green approach for aerobic oxidation of benzylic alcohols catalysed by Cu ^I –Y zeolite/TEMPO in ethanol without additional additives. New Journal of Chemistry, 2021, 45, 705-713.	2.8	31
11	Investigation of lattice capacity effect on Cu2+-doped SnO2 solid solution catalysts to promote reaction performance toward NO -SCR with NH3. Chinese Journal of Catalysis, 2020, 41, 877-888.	14.0	29
12	Copper-catalyzed synthesis of aryl and alkyl trifluoromethyl sulfides using CF3SiMe3 and Na2S2O3 as –SCF3 source. Tetrahedron Letters, 2014, 55, 4909-4911.	1.4	27
13	Electrochemical investigation into the electron transfer mechanism of a diiron hexacarbonyl complex bearing a bridging naphthalene moiety. Electrochimica Acta, 2015, 163, 190-195.	5.2	27
14	Roles of phenol groups and auxiliary ligand of copper(<scp>ii</scp>) complexes with tetradentate ligands in the aerobic oxidation of benzyl alcohol. Dalton Transactions, 2017, 46, 8286-8297.	3.3	26
15	Aerobic Oxidation of Alcohols Catalysed by Cu(I)/NMI/TEMPO System and Its Mechanistic Insights. Catalysis Letters, 2018, 148, 2709-2718.	2.6	26
16	Diiron Complexes with Pendant Phenol Group(s) as Mimics of the Diiron Subunit of [FeFe]-Hydrogenase: Synthesis, Characterisation, and Electrochemical Investigation. European Journal of Inorganic Chemistry, 2011, 2011, 1112-1120.	2.0	25
17	Brief survey of diiron and monoiron carbonyl complexes and their potentials as CO-releasing molecules (CORMs). Coordination Chemistry Reviews, 2021, 429, 213634.	18.8	24
18	Tumor Microenvironment-Activated Nanoparticles Loaded with an Iron-Carbonyl Complex for Chemodynamic Immunotherapy of Lung Metastasis of Melanoma <i>In Vivo</i> . ACS Applied Materials & Interfaces, 2021, 13, 39100-39111.	8.0	24

Wei Zhong

#	Article	IF	CITATIONS
19	Characterization and Magnetic Properties of Helical Carbon Nanotubes and Carbon Nanobelts Synthesized in Acetylene Decomposition over Feâ^'Cu Nanoparticles at 450 °C. Journal of Physical Chemistry C, 2009, 113, 15934-15940.	3.1	21
20	Magnetic core–shell Fe ₃ O ₄ @Cu ₂ O and Fe ₃ O ₄ @Cu ₂ O–Cu materials as catalysts for aerobic oxidation of benzylic alcohols assisted by TEMPO and <i>N</i>	3.6	20
21	The influence of a peripheral functional group of diiron hexacarbonyl complexes on their electrochemistry and electrocatalytic reduction of proton. Electrochimica Acta, 2017, 247, 779-786.	5.2	18
22	Polymers functionalized with 1,2-benzenedithiolate-bridged model compound of [FeFe]-hydrogenase: Synthesis, characterization and their catalytic activity. International Journal of Hydrogen Energy, 2016, 41, 14068-14078.	7.1	17
23	A rare bond between a soft metal (Fel) and a relatively hard base (ROâ^', R = phenolic moiety). Inorganic Chemistry Communication, 2010, 13, 1089-1092.	3.9	16
24	Unusual group migration and C(sp3)–H activation leading to stable metallacycles in the reactions of Cp*lrS2C2B10H10 and aryl azides. Chemical Communications, 2012, 48, 2152.	4.1	15
25	Multi-pyridine decorated Fe(ii) and Ru(ii) complexes by Pd(0)-catalysed cross couplings: new building blocks for metallosupramolecular assemblies. Dalton Transactions, 2013, 42, 15625.	3.3	15
26	Proton-coupled electron transfer in the reduction of diiron hexacarbonyl complexes and its enhancement on the electrocatalytic reduction of protons by a pendant basic group. Dalton Transactions, 2019, 48, 13711-13718.	3.3	15
27	Probing into the electrochemistry of four nickel(II) and cobalt(II) complexes with azadiphosphine ligands (PNP) and their catalysis on proton reduction. Electrochimica Acta, 2020, 340, 135998.	5.2	15
28	Recent developments in electrochemical investigations into iron carbonyl complexes relevant to the iron centres of hydrogenases. Dalton Transactions, 2021, 51, 40-47.	3.3	15
29	Magnetic Properties and Large-Scale Synthesis of Novel Carbon Nanocomposites via Benzene Decomposition over Ni Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 2267-2272.	3.1	14
30	Synthesis and Reactivity of the Imido-Bridged Metallothiocarboranes CpCo(S ₂ C ₂ B ₁₀ H ₁₀)(NSO ₂ R). Organometallics, 2012, 31, 6658-6668.	2.3	14
31	Synthesis, characterisation of two hexa-iron clusters with {Fe2S2(CO)x} (x=5 or 6) fragments and investigation into their inter-conversion. Journal of Organometallic Chemistry, 2008, 693, 3751-3759.	1.8	13
32	Tailoring Active O ₂ [–] and O ₂ ^{2–} Anions on a ZnO Surface with the Addition of Different Alkali Metals Probed by CO Oxidation. Industrial & Engineering Chemistry Research, 2020, 59, 9382-9392.	3.7	13
33	Engineering the surface of cuprous oxide via surface coordination for efficient catalysis on aerobic oxidation of benzylic alcohols under ambient conditions. Applied Surface Science, 2021, 543, 148840.	6.1	13
34	Synthesis, cytotoxic activities and cell cycle arrest profiles of half-sandwich N-sulfonamide based dithio-o-carborane metal complexes. Bioorganic and Medicinal Chemistry, 2012, 20, 4693-4700.	3.0	12
35	Using polyethyleneimine (PEI) as a scaffold to construct mimicking systems of [FeFe]â€hydrogenase: preparation, characterization of PEIâ€based materials, and their catalysis on proton reduction. Applied Organometallic Chemistry, 2013, 27, 253-260.	3.5	12
36	Probing the electron transfer mechanism of the half-sandwich iron(II)-carbonyl complexes and their catalysis on proton reduction. Electrochimica Acta, 2018, 283, 27-35.	5.2	12

Wei Zhong

#	Article	IF	CITATIONS
37	Alcoholâ€Induced Câ^'N Bond Cleavage of Cyclometalated Nâ€Heterocyclic Carbene Ligands with a Methyleneâ€Linked Pendant Imidazolium Ring. Chemistry - A European Journal, 2016, 22, 12138-12144.	3.3	11
38	A dinuclear iron(II) complex bearing multidentate pyridinyl ligand: Synthesis, characterization and its catalysis on the hydroxylation of aromatic compounds. Inorganica Chimica Acta, 2016, 444, 159-165.	2.4	11
39	Periodic mesoporous organosilicas functionalized with iron(<scp>iii</scp>) complexes: preparation, characterization and catalysis on direct hydroxylation of benzene to phenol. RSC Advances, 2016, 6, 98406-98412.	3.6	10
40	Synergetic oxidation of ethylbenzene to acetophenone catalyzed by manganese(II) complexes bearing pendant iodophenyl groups. Journal of Organometallic Chemistry, 2017, 853, 136-142.	1.8	10
41	Revealing the Intrinsic Nature of the Synergistic Effect Caused by the Formation of Heterojunctions in Cu–Cu ₂ O/rGO-NH ₂ Nanomaterials in the Catalysis of Selective Aerobic Oxidation of Benzyl Alcohol. Inorganic Chemistry, 2021, 60, 14540-14543.	4.0	10
42	Beckmann rearrangement of ketoximes promoted by cyanuric chloride and dimethyl sulfoxide under a mild condition. Tetrahedron Letters, 2021, 63, 152707.	1.4	9
43	The superiority of cuprous chloride to iodide in the selective aerobic oxidation of benzylic alcohols at ambient temperature. Applied Organometallic Chemistry, 2021, 35, e6245.	3.5	7
44	Investigation into the reactivity of 16-electron complexes Cp [#] Co(S ₂ C ₂ B ₁₀ H ₁₀) (Cp [#] =)	Tj ETጪq0 0	0 r g 8T /Overlo
45	Synthesis and characterization of chromanâ€containing compounds and their preliminary assessment of cytotoxicity toward two human cancer cell lines. Heteroatom Chemistry, 2010, 21, 423-429.	0.7	3
46	Radical coupling for directed C–C/C–S bond formation in the reaction of Cp*IrS2C2B10H10 with 1-azido-3-nitrobenzene. Dalton Transactions, 2014, 43, 4962.	3.3	3
47	Facile synthesis of 4,4'-bis-sydnones. Arkivoc, 2015, 2015, 122-130.	0.5	3
48	Very thin barium ferrite particles prepared by a novel technique: Ion exchange resin method. Journal of Applied Physics, 1999, 85, 5552-5554.	2.5	2
49	Reactivity Modes of Cp*M-Type Half-Sandwich Dichalcogenolate Complexes with 2,6-Disubstituted Aryl Azides: The Effects of the Metal Center, Chalcogen, and Ligand Moiety on Product Formation. ACS Omega, 2019, 4, 12719-12726.	3.5	2
50	Iron(0) tricarbonyl η ⁴ -1-azadiene complexes and their catalytic performance in the hydroboration of ketones, aldehydes and aldimines <i>via</i> a non-iron hydride pathway. Dalton Transactions, 0, , .	3.3	1