Zhigang Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3774880/publications.pdf Version: 2024-02-01

7HICANCLU

#	Article	IF	CITATIONS
1	Receptome profiling identifies KREMEN1 and ASGR1 as alternative functional receptors of SARS-CoV-2. Cell Research, 2022, 32, 24-37.	12.0	98
2	Intratumoral administration of STINC-activating nanovaccine enhances T cell immunotherapy. , 2022, 10, e003960.		22
3	Efficient expansion of mouse hematopoietic stem cells exÂvivo by membrane anchored Angptl2. Biochemical and Biophysical Research Communications, 2022, 617, 42-47.	2.1	1
4	Oxidative phosphorylation enhances the leukemogenic capacity and resistance to chemotherapy of B cell acute lymphoblastic leukemia. Science Advances, 2021, 7, .	10.3	24
5	LILRB3 supports acute myeloid leukemia development and regulates T-cell antitumor immune responses through the TRAF2–cFLIP–NF-κB signaling axis. Nature Cancer, 2021, 2, 1170-1184.	13.2	23
6	LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature, 2018, 562, 605-609.	27.8	172
7	NK cellâ€mediated antiâ€leukemia cytotoxicity is enhanced using a NKG2D ligand MICA and antiâ€CD20 scfv chimeric protein. European Journal of Immunology, 2018, 48, 1750-1763.	2.9	7
8	CAMKs support development of acute myeloid leukemia. Journal of Hematology and Oncology, 2018, 11, 30.	17.0	26
9	A STING-activating nanovaccine for cancer immunotherapy. Nature Nanotechnology, 2017, 12, 648-654.	31.5	649
10	Fasting selectively blocks development of acute lymphoblastic leukemia via leptin-receptor upregulation. Nature Medicine, 2017, 23, 79-90.	30.7	101
11	Hypoxia induces heart regeneration in adult mice. Nature, 2017, 541, 222-227.	27.8	566
12	ACER3 supports development of acute myeloid leukemia. Biochemical and Biophysical Research Communications, 2016, 478, 33-38.	2.1	29
13	Inhibitory leukocyte immunoglobulin-like receptors in cancer development. Science China Life Sciences, 2015, 58, 1216-1225.	4.9	38
14	Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature, 2015, 523, 226-230.	27.8	284
15	The ITIM-containing receptor LAIR1 is essential for acute myeloid leukaemia development. Nature Cell Biology, 2015, 17, 665-677.	10.3	112
16	ADCY7 supports development of acute myeloid leukemia. Biochemical and Biophysical Research Communications, 2015, 465, 47-52.	2.1	42
17	Angiopoietin-like proteins stimulate HSPC development through interaction with notch receptor signaling. ELife, 2015, 4, .	6.0	30
18	Inhibitory Receptor, gp49B1, Is Co-Expressed with c-Kit and Regulates Hematopoiesis during Development. Blood, 2015, 126, 4751-4751.	1.4	0

Zhigang Lu

#	Article	IF	CITATIONS
19	Profilin 1 is essential for retention and metabolism of mouse hematopoietic stem cells in bone marrow. Blood, 2014, 123, 992-1001.	1.4	40
20	A motif in LILRB2 critical for Angptl2 binding and activation. Blood, 2014, 124, 924-935.	1.4	68
21	CHD4/NuRD maintains demethylation state of rDNA promoters through inhibiting the expression of the rDNA methyltransferase recruiter TIP5. Biochemical and Biophysical Research Communications, 2013, 437, 101-107.	2.1	12
22	NuRD Blocks Reprogramming of Mouse Somatic Cells into Pluripotent Stem Cells. Stem Cells, 2013, 31, 1278-1286.	3.2	98
23	Chromatin-bound NLS proteins recruit membrane vesicles and nucleoporins for nuclear envelope assembly via importin- $\hat{l} \pm / \hat{l}^2$. Cell Research, 2012, 22, 1562-1575.	12.0	16
24	Nuclear entry of active caspase-3 is facilitated by its p3-recognition-based specific cleavage activity. Cell Research, 2010, 20, 211-222.	12.0	48
25	Identification and Characterization of Bmi-1-responding Element within the Human p16 Promoter*. Journal of Biological Chemistry, 2010, 285, 33219-33229.	3.4	51
26	Nucleoplasmin regulates chromatin condensation during apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2778-2783.	7.1	45
27	Rapid senescence induced by overexpression of p53 in NIH3T3 cells. Science Bulletin, 2001, 46, 653-656.	1.7	0
28	Specific degradation of keratin in Xenopus laevis egg extracts undergoing apoptosis. Science Bulletin, 2000, 45, 1977-1981.	1.7	3
29	Identification of a DNase activated inXenopus egg extracts undergoing apoptosis. Science Bulletin,	1.7	6