
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/377427/publications.pdf Version: 2024-02-01

7HENVIL SUN

#	Article	IF	CITATIONS
1	High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 2008, 3, 563-568.	15.6	5,431
2	Fundamentals and Challenges of Electrochemical CO2 Reduction Using Two-Dimensional Materials. CheM, 2017, 3, 560-587.	5.8	815
3	Nitrogen Fixation by Ru Single-Atom Electrocatalytic Reduction. CheM, 2019, 5, 204-214.	5.8	739
4	Amorphous Cobalt Boride (Co ₂ B) as a Highly Efficient Nonprecious Catalyst for Electrochemical Water Splitting: Oxygen and Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1502313.	10.2	686
5	Mn _{<i>x</i>} O _{<i>y</i>} /NC and Co _{<i>x</i>} O _{<i>y</i>} /NC Nanoparticles Embedded in a Nitrogenâ€Doped Carbon Matrix for Highâ€Performance Bifunctional Oxygen Electrodes. Angewandte Chemie - International Edition, 2014, 53, 8508-8512.	7.2	482
6	A Highly Efficient Chemical Sensor Material for H2S: α-Fe2O3 Nanotubes Fabricated Using Carbon Nanotube Templates. Advanced Materials, 2005, 17, 2993-2997.	11.1	446
7	Catalysis of Carbon Dioxide Photoreduction on Nanosheets: Fundamentals and Challenges. Angewandte Chemie - International Edition, 2018, 57, 7610-7627.	7.2	361
8	Multicomponent Solubility Parameters for Single-Walled Carbon Nanotubeâ^'Solvent Mixtures. ACS Nano, 2009, 3, 2340-2350.	7.3	347
9	Quantitative Evaluation of Surfactant-stabilized Single-walled Carbon Nanotubes: Dispersion Quality and Its Correlation with Zeta Potential. Journal of Physical Chemistry C, 2008, 112, 10692-10699.	1.5	343
10	Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation. Carbon, 2007, 45, 1795-1801.	5.4	341
11	Towards Solutions of Singleâ€Walled Carbon Nanotubes in Common Solvents. Advanced Materials, 2008, 20, 1876-1881.	11.1	333
12	Scalable exfoliation and dispersion of two-dimensional materials – an update. Physical Chemistry Chemical Physics, 2017, 19, 921-960.	1.3	261
13	Electrochemical ammonia synthesis: Mechanistic understanding and catalyst design. CheM, 2021, 7, 1708-1754.	5.8	253
14	Two-dimensional nanosheets for electrocatalysis in energy generation and conversion. Journal of Materials Chemistry A, 2017, 5, 7257-7284.	5.2	220
15	Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction. Applied Catalysis B: Environmental, 2019, 257, 117896.	10.8	220
16	Activation of Ni Particles into Single Ni–N Atoms for Efficient Electrochemical Reduction of CO ₂ . Advanced Energy Materials, 2020, 10, 1903068.	10.2	210
17	Ru Nanoparticles Immobilized on Montmorillonite by Ionic Liquids: A Highly Efficient Heterogeneous Catalyst for the Hydrogenation of Benzene. Angewandte Chemie - International Edition, 2006, 45, 266-269.	7.2	193
18	Electrochemical CO2 reduction to C2+ species: Heterogeneous electrocatalysts, reaction pathways, and optimization strategies. Materials Today Energy, 2018, 10, 280-301.	2.5	188

#	Article	IF	CITATIONS
19	Synthesis of Fe2O3 loaded porous g-C3N4 photocatalyst for photocatalytic reduction of dinitrogen to ammonia. Chemical Engineering Journal, 2019, 373, 572-579.	6.6	181
20	Carbon-supported Ni nanoparticles for efficient CO ₂ electroreduction. Chemical Science, 2018, 9, 8775-8780.	3.7	179
21	Photocatalytic Reduction of CO ₂ by Metalâ€Freeâ€Based Materials: Recent Advances and Future Perspective. Solar Rrl, 2020, 4, 1900546.	3.1	177
22	Oxygen vacancy enables electrochemical N2 fixation over WO3 with tailored structure. Nano Energy, 2019, 62, 869-875.	8.2	150
23	Facile Synthesis of Polyaniline Nanofibers Using Chloroaurate Acid as the Oxidant. Langmuir, 2005, 21, 833-836.	1.6	147
24	Photocatalytic Fixation of Nitrogen to Ammonia by Single Ru Atom Decorated TiO ₂ Nanosheets. ACS Sustainable Chemistry and Engineering, 2019, 7, 6813-6820.	3.2	142
25	Fabrication of Ruthenium-Carbon Nanotube Nanocomposites in Supercritical Water. Advanced Materials, 2005, 17, 928-932.	11.1	136
26	In Situ Controllable Loading of Ultrafine Noble Metal Particles on Titania. Journal of the American Chemical Society, 2009, 131, 6648-6649.	6.6	135
27	Two-dimensional materials for energy conversion and storage. Progress in Materials Science, 2020, 111, 100637.	16.0	134
28	Trace metal residues promote the activity of supposedly metal-free nitrogen-modified carbon catalysts for the oxygen reduction reaction. Electrochemistry Communications, 2013, 34, 113-116.	2.3	124
29	N-Doping of graphene oxide at low temperature for the oxygen reduction reaction. Chemical Communications, 2017, 53, 873-876.	2.2	121
30	The solvent-free selective hydrogenation of nitrobenzene to aniline: an unexpected catalytic activity of ultrafine Pt nanoparticles deposited on carbon nanotubes. Green Chemistry, 2010, 12, 1007.	4.6	119
31	Highly stable two-dimensional bismuth metal-organic frameworks for efficient electrochemical reduction of CO2. Applied Catalysis B: Environmental, 2020, 277, 119241.	10.8	109
32	New Solvents for Nanotubes: Approaching the Dispersibility of Surfactants. Journal of Physical Chemistry C, 2010, 114, 231-237.	1.5	108
33	Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene. Current Opinion in Colloid and Interface Science, 2015, 20, 311-321.	3.4	101
34	Stabilization of Cu ⁺ by tuning a CuO–CeO ₂ interface for selective electrochemical CO ₂ reduction to ethylene. Green Chemistry, 2020, 22, 6540-6546.	4.6	98
35	Synthesis of ZrO2â^'Carbon Nanotube Composites and Their Application as Chemiluminescent Sensor Material for Ethanol. Journal of Physical Chemistry B, 2006, 110, 13410-13414.	1.2	97
36	High-yield production of few-layer boron nanosheets for efficient electrocatalytic N ₂ reduction. Chemical Communications, 2019, 55, 4246-4249.	2.2	96

#	Article	IF	CITATIONS
37	Doping palladium with tellurium for the highly selective electrocatalytic reduction of aqueous CO ₂ to CO. Chemical Science, 2018, 9, 483-487.	3.7	93
38	Nonlinear Absorption Induced Transparency and Optical Limiting of Black Phosphorus Nanosheets. ACS Photonics, 2017, 4, 3063-3070.	3.2	92
39	Heterogeneous electrochemical CO ₂ reduction using nonmetallic carbon-based catalysts: current status and future challenges. Nanotechnology, 2017, 28, 472001.	1.3	87
40	Graphene-based materials for electrochemical CO2 reduction. Journal of CO2 Utilization, 2019, 30, 168-182.	3.3	87
41	Ptâ^'Ru/CeO ₂ /Carbon Nanotube Nanocomposites: An Efficient Electrocatalyst for Direct Methanol Fuel Cells. Langmuir, 2010, 26, 12383-12389.	1.6	86
42	Fabrication and characterization of magnetic carbon nanotube composites. Journal of Materials Chemistry, 2005, 15, 4497.	6.7	81
43	Facile Route to Synthesize Multiwalled Carbon Nanotube/Zinc Sulfide Heterostructures:  Optical and Electrical Properties. Journal of Physical Chemistry B, 2005, 109, 12772-12776.	1.2	81
44	Study on the Anatase to Rutile Phase Transformation and Controlled Synthesis of Rutile Nanocrystals with the Assistance of Ionic Liquid. Langmuir, 2010, 26, 10294-10302.	1.6	80
45	Highly Concentrated Aqueous Dispersions of Graphene Exfoliated by Sodium Taurodeoxycholate: Dispersion Behavior and Potential Application as a Catalyst Support for the Oxygenâ€Reduction Reaction. Chemistry - A European Journal, 2012, 18, 6972-6978.	1.7	76
46	Large Populations of Individual Nanotubes in Surfactant-Based Dispersions without the Need for Ultracentrifugation. Journal of Physical Chemistry C, 2008, 112, 972-977.	1.5	75
47	New solvent-stabilized few-layer black phosphorus for antibacterial applications. Nanoscale, 2018, 10, 12543-12553.	2.8	74
48	High-yield exfoliation of graphite in acrylate polymers: A stable few-layer graphene nanofluid with enhanced thermal conductivity. Carbon, 2013, 64, 288-294.	5.4	71
49	Entrapped Single Tungstate Site in Zeolite for Cooperative Catalysis of Olefin Metathesis with BrÅ,nsted Acid Site. Journal of the American Chemical Society, 2018, 140, 6661-6667.	6.6	71
50	Synthesis and characterization of TiO2–montmorillonite nanocomposites and their application for removal of methylene blue. Journal of Materials Chemistry, 2006, 16, 579-584.	6.7	70
51	Photocatalytic nitrogen reduction to ammonia: Insights into the role of defect engineering in photocatalysts. Nano Research, 2022, 15, 2773-2809.	5.8	69
52	Decoration carbon nanotubes with Pd and Ru nanocrystals via an inorganic reaction route in supercritical carbon dioxide–methanol solution. Journal of Colloid and Interface Science, 2006, 304, 323-328.	5.0	68
53	ZIF-67-Derived Cobalt/Nitrogen-Doped Carbon Composites for Efficient Electrocatalytic N ₂ Reduction. ACS Applied Energy Materials, 2019, 2, 6071-6077.	2.5	67
54	Exfoliation of Stable 2D Black Phosphorus for Device Fabrication. Chemistry of Materials, 2017, 29, 6445-6456.	3.2	66

#	Article	IF	CITATIONS
55	Coating carbon nanotubes with metal oxides in a supercritical carbon dioxide–ethanol solution. Carbon, 2007, 45, 2589-2596.	5.4	65
56	Supercritical Fluidâ€Facilitated Exfoliation and Processing of 2D Materials. Advanced Science, 2019, 6, 1901084.	5.6	65
57	Single Sb sites for efficient electrochemical CO ₂ reduction. Chemical Communications, 2019, 55, 12024-12027.	2.2	65
58	Single-atom catalysis for electrochemical CO2 reduction. Current Opinion in Green and Sustainable Chemistry, 2019, 16, 1-6.	3.2	65
59	Reduced graphene oxides with engineered defects enable efficient electrochemical reduction of dinitrogen to ammonia in wide pH range. Nano Energy, 2020, 68, 104323.	8.2	64
60	Nitrogen-doped and nanostructured carbons with high surface area for enhanced oxygen reduction reaction. Carbon, 2018, 126, 111-118.	5.4	63
61	Efficient bifunctional Co/N dual-doped carbon electrocatalysts for oxygen reduction and evolution reaction. Carbon, 2019, 153, 575-584.	5.4	59
62	Synthesis of PtRu/carbon nanotube composites in supercritical fluid and their application as an electrocatalyst for direct methanol fuel cells. Carbon, 2007, 45, 536-542.	5.4	58
63	Microstructural and electrochemical characterization of RuO2/CNT composites synthesized in supercritical diethyl amine. Carbon, 2006, 44, 888-893.	5.4	56
64	Rapid and Surfactant-Free Synthesis of Bimetallic Pt–Cu Nanoparticles Simply via Ultrasound-Assisted Redox Replacement. ACS Catalysis, 2012, 2, 1647-1653.	5.5	54
65	High-quality functionalized few-layer graphene: facile fabrication and doping with nitrogen as a metal-free catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 15444-15450.	5.2	53
66	Hydrazineâ€Assisted Liquid Exfoliation of MoS ₂ for Catalytic Hydrodeoxygenation of 4â€Methylphenol. Chemistry - A European Journal, 2016, 22, 2910-2914.	1.7	52
67	Solvothermal synthesis of mesoporous Eu2O3–TiO2 composites. Microporous and Mesoporous Materials, 2005, 81, 169-174.	2.2	51
68	Supercritical CO2-facilitating large-scale synthesis of CeO2 nanowires and their application for solvent-free selective hydrogenation of nitroarenes. Journal of Materials Chemistry, 2010, 20, 1947.	6.7	49
69	In-Situ Loading Ultrafine AuPd Particles on Ceria: Highly Active Catalyst for Solvent-Free Selective Oxidation of Benzyl Alcohol. Langmuir, 2011, 27, 1152-1157.	1.6	49
70	Porous Fe3O4 nanoparticles: Synthesis and application in catalyzing epoxidation of styrene. Journal of Colloid and Interface Science, 2011, 364, 298-303.	5.0	49
71	Ultrasound-Assisted Nitrogen and Boron Codoping of Graphene Oxide for Efficient Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 3434-3442.	3.2	49
72	The Immobilization of Glycidylâ€Group ontaining Ionic Liquids and Its Application in CO ₂ Cycloaddition Reactions. Chemistry - A European Journal, 2010, 16, 6687-6692.	1.7	47

#	Article	IF	CITATIONS
73	Efficient visible-light driven N ₂ fixation over two-dimensional Sb/TiO ₂ composites. Chemical Communications, 2019, 55, 7171-7174.	2.2	46
74	A carbon-coated TiO2(B) nanosheet composite for lithium ion batteries. Chemical Communications, 2014, 50, 5506.	2.2	45
75	Improving the performance of metal-organic frameworks for thermo-catalytic CO2 conversion: Strategies and perspectives. Chinese Journal of Catalysis, 2021, 42, 1903-1920.	6.9	45
76	Highâ€Concentration Graphene Dispersions with Minimal Stabilizer: A Scaffold for Enzyme Immobilization for Glucose Oxidation. Chemistry - A European Journal, 2014, 20, 5752-5761.	1.7	43
77	Control of Optical Limiting of Carbon Nanotube Dispersions by Changing Solvent Parameters. Journal of Physical Chemistry C, 2010, 114, 6148-6156.	1.5	42
78	Heterogeneous Catalysis of CO ₂ Hydrogenation to C ₂₊ Products. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018, 34, 858-872.	2.2	41
79	Efficient Electrochemical Reduction of CO ₂ by Ni–N Catalysts with Tunable Performance. ACS Sustainable Chemistry and Engineering, 2019, 7, 15030-15035.	3.2	40
80	Boosting ion dynamics through superwettable leaf-like film based on porous g-C3N4 nanosheets for ionogel supercapacitors. NPG Asia Materials, 2019, 11, .	3.8	40
81	Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications. Carbon, 2013, 62, 182-192.	5.4	39
82	Understanding the Antifouling Mechanism of Zwitterionic Monomer-Grafted Polyvinylidene Difluoride Membranes: A Comparative Experimental and Molecular Dynamics Simulation Study. ACS Applied Materials & Interfaces, 2019, 11, 14408-14417.	4.0	39
83	Metal-Tuned W ₁₈ O ₄₉ for Efficient Electrocatalytic N ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 2957-2963.	3.2	39
84	Enhanced electrochemical CO2 reduction to ethylene over CuO by synergistically tuning oxygen vacancies and metal doping. Cell Reports Physical Science, 2021, 2, 100356.	2.8	39
85	Integration of ultrafine CuO nanoparticles with two-dimensional MOFs for enhanced electrochemical CO2 reduction to ethylene. Chinese Journal of Catalysis, 2022, 43, 1049-1057.	6.9	39
86	Hollow and Yolkâ€Shell Iron Oxide Nanostructures on Few‣ayer Graphene in Liâ€Ion Batteries. Chemistry - A European Journal, 2014, 20, 2022-2030.	1.7	37
87	Lignosulfonate biomass derived N and S co-doped porous carbon for efficient oxygen reduction reaction. Sustainable Energy and Fuels, 2018, 2, 1820-1827.	2.5	37
88	Surface-engineered oxidized two-dimensional Sb for efficient visible light-driven N2 fixation. Nano Energy, 2020, 78, 105368.	8.2	37
89	Phase-Separation-Induced Micropatterned Polymer Surfaces and Their Applications. Advanced Functional Materials, 2005, 15, 655-663.	7.8	36
90	Shape and Size Controlled Synthesis of Anatase Nanocrystals with the Assistance of Ionic Liquid. Langmuir, 2010, 26, 5129-5134.	1.6	36

#	Article	IF	CITATIONS
91	Highly Porous Metalloporphyrin Covalent Ionic Frameworks with Wellâ€Đefined Cooperative Functional Groups as Excellent Catalysts for CO ₂ Cycloaddition. Chemistry - A European Journal, 2019, 25, 9052-9059.	1.7	36
92	Amine-based solvents for exfoliating graphite to graphene outperform the dispersing capacity of N-methyl-pyrrolidone and surfactants. Chemical Communications, 2014, 50, 10382-10385.	2.2	35
93	Replication of biological organizations through a supercritical fluid route. Chemical Communications, 2005, , 2948.	2.2	34
94	Single atom and defect engineering of CuO for efficient electrochemical reduction of CO ₂ to C ₂ H ₄ . SmartMat, 2022, 3, 194-205.	6.4	34
95	Achieving Highly Selective Electrocatalytic CO ₂ Reduction by Tuning CuO-Sb ₂ O ₃ Nanocomposites. ACS Sustainable Chemistry and Engineering, 2020, 8, 4948-4954.	3.2	33
96	Synthesis and characterization of mesoporous aluminosilicate molecular sieve from K-feldspar. Microporous and Mesoporous Materials, 2005, 83, 277-282.	2.2	32
97	Synthesis and characterization of ZnS-montmorillonite nanocomposites and their application for degrading eosin B. Journal of Colloid and Interface Science, 2006, 301, 116-122.	5.0	32
98	Ionic liquid-stabilized graphene and its use in immobilizing a metal nanocatalyst. RSC Advances, 2012, 2, 8189.	1.7	32
99	Synergistic catalysis of CuO/In ₂ O ₃ composites for highly selective electrochemical CO ₂ reduction to CO. Chemical Communications, 2019, 55, 12380-12383.	2.2	32
100	Earth-abundant coal-derived carbon nanotube/carbon composites as efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Journal of Energy Chemistry, 2021, 56, 87-97.	7.1	32
101	Single yttrium sites on carbon-coated TiO ₂ for efficient electrocatalytic N ₂ reduction. Chemical Communications, 2020, 56, 10910-10913.	2.2	31
102	Carbon nanotube/poly(2,4-hexadiyne-1,6-diol) nanocomposites prepared with the aid of supercritical CO2. Chemical Communications, 2004, , 2190.	2.2	30
103	Nanostructured Few-Layer Graphene with Superior Optical Limiting Properties Fabricated by a Catalytic Steam Etching Process. Journal of Physical Chemistry C, 2013, 117, 11811-11817.	1.5	29
104	Thermal-Stable Carbon Nanotube-Supported Metal Nanocatalysts by Mesoporous Silica Coating. Langmuir, 2011, 27, 6244-6251.	1.6	28
105	Liquid Exfoliation of Two-Dimensional PbI ₂ Nanosheets for Ultrafast Photonics. ACS Photonics, 2019, 6, 1051-1057.	3.2	28
106	Katalyse der Kohlenstoffdioxidâ€₽hotoreduktion an Nanoschichten: Grundlagen und Herausforderungen. Angewandte Chemie, 2018, 130, 7734-7752.	1.6	27
107	A N, P Dualâ€Doped Carbon with High Porosity as an Advanced Metalâ€Free Oxygen Reduction Catalyst. Advanced Materials Interfaces, 2019, 6, 1900592.	1.9	27
108	Microwave-Assisted Synthesis of Pt Nanocrystals and Deposition on Carbon Nanotubes in Ionic Liquids. Journal of Nanoscience and Nanotechnology, 2006, 6, 175-179.	0.9	27

#	Article	IF	CITATIONS
109	Carbon nanoflowers synthesized by a reduction–pyrolysis–catalysis route. Materials Letters, 2005, 59, 456-458.	1.3	26
110	Carbon onions synthesized via thermal reduction of glycerin with magnesium. Materials Chemistry and Physics, 2005, 93, 178-180.	2.0	24
111	One-pot solvothermal method to synthesize platinum/W18O49 ultrafine nanowires and their catalytic performance. Journal of Materials Chemistry, 2012, 22, 3354.	6.7	24
112	Tuning the Pd-catalyzed electroreduction of CO ₂ to CO with reduced overpotential. Catalysis Science and Technology, 2018, 8, 3894-3900.	2.1	24
113	Trace metals dramatically boost oxygen electrocatalysis of N-doped coal-derived carbon for zinc–air batteries. Nanoscale, 2020, 12, 9628-9639.	2.8	24
114	Synthesis of Noble Metal/Carbon Nanotube Composites in Supercritical Methanol. Journal of Nanoscience and Nanotechnology, 2006, 6, 691-697.	0.9	23
115	Interface engineered Sb2O3/W18O49 heterostructure for enhanced visible-light-driven photocatalytic N2 reduction. Chemical Engineering Journal, 2022, 438, 135485.	6.6	21
116	Supercritical carbon dioxide-assisted deposition of tin oxide on carbon nanotubes. Materials Letters, 2007, 61, 4565-4568.	1.3	19
117	Ultrasonication-assisted uniform decoration of carbon nanotubes by various particles with controlled size and loading. Carbon, 2011, 49, 4376-4384.	5.4	18
118	Single Nb atom modified anatase TiO2(110) for efficient electrocatalytic nitrogen reduction reaction. Chem Catalysis, 2022, 2, 2275-2288.	2.9	18
119	Demonstrating the steady performance of iron oxide composites over 2000 cycles at fast charge-rates for Li-ion batteries. Chemical Communications, 2016, 52, 7348-7351.	2.2	17
120	An efficient pH-universal electrocatalyst for oxygen reduction: defect-rich graphitized carbon shell wrapped cobalt within hierarchical porous N-doped carbon aerogel. Materials Today Energy, 2020, 17, 100452.	2.5	17
121	Effects of Ambient Conditions on Solventâ~'Nanotube Dispersions: Exposure to Water and Temperature Variation. Journal of Physical Chemistry C, 2009, 113, 1260-1266.	1.5	16
122	Atomically Dispersed Nickel Sites for Selective Electroreduction of CO ₂ . ACS Applied Energy Materials, 2019, 2, 8836-8842.	2.5	16
123	Engineering vacancy and hydrophobicity of two-dimensional TaTe2 for efficient and stable electrocatalytic N2 reduction. Innovation(China), 2022, 3, 100190.	5.2	16
124	Few-layer graphene modified with nitrogen-rich metallo-macrocyclic complexes as precursor for bifunctional oxygen electrocatalysts. Electrochimica Acta, 2016, 222, 1191-1199.	2.6	15
125	Chitosan-mediated synthesis of mesoporous α-Fe2O3 nanoparticles and their applications in catalyzing selective oxidation of cyclohexane. Science China Chemistry, 2010, 53, 1502-1508.	4.2	14
126	Synthesis of Polyaniline Nanofibrous Networks with the Aid of an Amphiphilic Ionic Liquid. Journal of Nanoscience and Nanotechnology, 2006, 6, 227-230.	0.9	14

#	Article	IF	CITATIONS
127	Design of Porous Core–Shell Manganese Oxides to Boost Electrocatalytic Dinitrogen Reduction. ACS Sustainable Chemistry and Engineering, 2022, 10, 1316-1322.	3.2	14
128	Metal Oxide-Based Materials for Electrochemical CO ₂ Reduction. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	13
129	Selective Electroreduction of CO ₂ and CO to C ₂ H ₄ by Synergistically Tuning Nanocavities and the Surface Charge of Copper Oxide. ACS Sustainable Chemistry and Engineering, 2022, 10, 6466-6475.	3.2	13
130	In situ loading of palladium nanoparticles on mica and their catalytic applications. Journal of Colloid and Interface Science, 2011, 353, 269-274.	5.0	12
131	Oneâ€Pot Synthesis of Carbonâ€Coated Nanostructured Iron Oxide on Fewâ€Layer Graphene for Lithiumâ€lon Batteries. Chemistry - A European Journal, 2015, 21, 16154-16161.	1.7	12
132	Cadmium-based metalâ~`organic frameworks for high-performance electrochemical CO2 reduction to CO over wide potential range. Chinese Journal of Chemical Engineering, 2022, 43, 143-151.	1.7	12
133	Engineering the CuO–HfO ₂ interface toward enhanced CO ₂ electroreduction to C ₂ H ₄ . Chemical Communications, 2022, 58, 7412-7415.	2.2	12
134	Synthesis of TiO2 nanotube networks from the mineralization of swim bladder membrane in supercritical CO2. Journal of Supercritical Fluids, 2007, 42, 310-315.	1.6	11
135	Arginine-mediated synthesis of highly efficient catalysts for transfer hydrogenations of ketones. Journal of Colloid and Interface Science, 2010, 351, 501-506.	5.0	11
136	Electrocatalytic coupling of CO2 and N2 for urea synthesis. Current Opinion in Green and Sustainable Chemistry, 2022, 37, 100648.	3.2	11
137	Simple synthesis of two-dimensional MoP2 nanosheets for efficient electrocatalytic hydrogen evolution. Electrochemistry Communications, 2018, 97, 27-31.	2.3	9
138	Modulation of Photogenerated Carrier Transport by Integration of Sb ₂ O ₃ with Fe ₂ O ₃ for Improved Photoelectrochemical Water Oxidation. ACS Applied Energy Materials, 2022, 5, 8844-8851.	2.5	9
139	In situ Eu2O3 coating on the walls of mesoporous silica SBA-15 in supercritical ethane+ethanol mixture. Microporous and Mesoporous Materials, 2004, 75, 101-105.	2.2	8
140	Facile synthesis of two-dimensional copper terephthalate for efficient electrocatalytic CO ₂ reduction to ethylene. Journal of Experimental Nanoscience, 2021, 16, 246-254.	1.3	7
141	Electrocatalytic CO ₂ Reduction to Ethylene over CeO ₂ -Supported Cu Nanoparticles: Effect of Exposed Facets of CeO ₂ . Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	7
142	Efficient dispersion and exfoliation of single-walled nanotubes in 3-aminopropyltriethoxysilane and its derivatives. Nanotechnology, 2008, 19, 485702.	1.3	6
143	Green solvent-based approaches for synthesis of nanomaterials. Science China Chemistry, 2010, 53, 372-382.	4.2	6
144	CO ₂ -Mediated Synthesis of ZnO Nanorods and Their Application in Sensing Ethanol Vapor. Journal of Nanoscience and Nanotechnology, 2011, 11, 1252-1258.	0.9	6

#	Article	IF	CITATIONS
145	Supercritical diethylamine facilitated loading of ultrafine Ru particles on few-layer graphene for solvent-free hydrogenation of levulinic acid to <i>γ</i> -valerolactone. Nanotechnology, 2018, 29, 075708.	1.3	6
146	Controllable synthesis of titania/reduced graphite oxide nanocomposites with various titania phase compositions and their photocatalytic performance. Science China Chemistry, 2012, 55, 1294-1302.	4.2	4
147	p-Aminophenylacetic acid-mediated synthesis of monodispersed titanium oxide hybrid microspheres in ethanol solution. Journal of Colloid and Interface Science, 2009, 338, 468-473.	5.0	3
148	Graphene/Porous Beta TiO2 Nanocomposites Prepared Through a Simple Hydrothermal Method. Current Graphene Science, 2017, 1, .	0.5	3
149	Synthesis of Tubular Graphite Cones through a Catalytically Thermal Reduction Route. Journal of Physical Chemistry B, 2004, 108, 9811-9814.	1.2	2
150	Rücktitelbild: Eine Stickstoff-dotierte Kohlenstoffmatrix mit eingeschlossenen MnxOy/NC- und CoxOy/NC-Nanopartikeln für leistungsfÃ h ige bifunktionale Sauerstoffelektroden (Angew. Chem.) Tj ETQq0 0 0	rgBT /Ove	erlæck 10 Tf S
151	High-efficiency mixing process in secondary rotating stream. Chemical Engineering Journal, 2017, 313, 807-814.	6.6	2
152	A Miracle Metal@Zeolite for Selective Conversion of Syngas to Ethanol. CheM, 2020, 6, 546-548.	5.8	2
153	Graphene and its Hybrids for Photocatalysis. Current Graphene Science, 2019, 2, 79-96.	0.5	1
154	Recent Advances in Electrode Materials for Electrochemical CO2Reduction. ACS Symposium Series, 2020, , 49-91.	0.5	1
155	Application of two-dimensional materials for electrochemical carbon dioxide reduction. , 2020, , 289-326.		1
156	Reductive Transformation of Carbon Dioxide. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020,	2.2	1
157	High-intensity sonication-assisted synthesis of supported noble metal nanocatalysts. Scientia Sinica Chimica, 2011, 41, 1366-1371.	0.2	0