
C Liewhiran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/377407/publications.pdf Version: 2024-02-01

CLIEWHIDAN

#	Article	IF	CITATIONS
1	Semiconducting metal oxides as sensors for environmentally hazardous gases. Sensors and Actuators B: Chemical, 2011, 160, 580-591.	4.0	1,026
2	Ultra-sensitive H2 sensors based on flame-spray-made Pd-loaded SnO2 sensing films. Sensors and Actuators B: Chemical, 2013, 176, 893-905.	4.0	99
3	Highly selective environmental sensors based on flame-spray-made SnO2 nanoparticles. Sensors and Actuators B: Chemical, 2012, 163, 51-60.	4.0	77
4	Rapid ethanol sensor based on electrolytically-exfoliated graphene-loaded flame-made In-doped SnO2 composite film. Sensors and Actuators B: Chemical, 2015, 209, 40-55.	4.0	76
5	Ultra-responsive hydrogen gas sensors based on PdO nanoparticle-decorated WO3 nanorods synthesized by precipitation and impregnation methods. Sensors and Actuators B: Chemical, 2016, 226, 76-89.	4.0	75
6	Highly sensitive and selective NO2 sensor based on Au-impregnated WO3 nanorods. Sensors and Actuators B: Chemical, 2017, 252, 523-536.	4.0	74
7	Highly selective and sensitive CH4 gas sensors based on flame-spray-made Cr-doped SnO2 particulate films. Sensors and Actuators B: Chemical, 2019, 291, 177-191.	4.0	66
8	Effects of cobalt doping on nitric oxide, acetone and ethanol sensing performances of FSP-made SnO2 nanoparticles. Sensors and Actuators B: Chemical, 2015, 210, 589-601.	4.0	62
9	Ultra-sensitive and highly selective H2 sensors based on FSP-made Rh-substituted SnO2 sensing films. Sensors and Actuators B: Chemical, 2017, 240, 1141-1152.	4.0	56
10	Highly-sensitive H2S sensors based on flame-made V-substituted SnO2 sensing films. Sensors and Actuators B: Chemical, 2017, 242, 1095-1107.	4.0	52
11	Selective H2S gas sensors based on ohmic hetero-interface of Au-functionalized WO3 nanowires. Applied Surface Science, 2022, 571, 151262.	3.1	49
12	H2S sensor based on SnO2 nanostructured film prepared by high current heating. Sensors and Actuators B: Chemical, 2014, 203, 565-578.	4.0	46
13	Printed organo-functionalized graphene for biosensing applications. Biosensors and Bioelectronics, 2017, 87, 7-17.	5.3	44
14	WO3 nanotubesâ^'SnO2 nanoparticles heterointerfaces for ultrasensitive and selective NO2 detections. Applied Surface Science, 2018, 458, 319-332.	3.1	43
15	Highly sensitive acetone sensors based on flame-spray-made La2O3-doped SnO2 nanoparticulate thick films. Sensors and Actuators B: Chemical, 2018, 262, 245-262.	4.0	40
16	Highly sensitive and selective detection of ethanol vapor using flame-spray-made CeOx-doped SnO2 nanoparticulate thick films. Sensors and Actuators B: Chemical, 2018, 255, 8-21.	4.0	38
17	Ultrafine Bi2WO6 nanoparticles prepared by flame spray pyrolysis for selective acetone gas-sensing. Materials Science in Semiconductor Processing, 2019, 90, 263-275.	1.9	35
18	Effect of AgO loading on flame-made LaFeO3 p-type semiconductor nanoparticles to acetylene sensing. Sensors and Actuators B: Chemical, 2020, 312, 127990.	4.0	35

C LIEWHIRAN

#	Article	IF	CITATIONS
19	Synergistic Effects of PdO <i>_x</i> –CuO <i>_x</i> Loadings on Methyl Mercaptan Sensing of Porous WO ₃ Microspheres Prepared by Ultrasonic Spray Pyrolysis. ACS Applied Materials & Interfaces, 2020, 12, 41728-41739.	4.0	28
20	Role of molybdenum substitutional dopants on H2S-sensing enhancement of flame-spray-made SnO2 nanoparticulate thick films. Sensors and Actuators B: Chemical, 2016, 235, 678-690.	4.0	27
21	Flame-made Zn-substituted SnO2 nanoparticulate compound for ultra-sensitive formic acid gas sensing. Journal of Alloys and Compounds, 2021, 871, 159547.	2.8	25
22	Pt-doped In2O3 nanoparticles prepared by flame spray pyrolysis for NO2 sensing. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	24
23	Flame-spray-made PtOx-functionalized Zn2SnO4 spinel nanostructures for conductometric H2 detection. Sensors and Actuators B: Chemical, 2020, 316, 128132.	4.0	23
24	Formaldehyde sensor based on FSP-made AgOx-doped SnO2 nanoparticulate sensing films. Sensors and Actuators B: Chemical, 2020, 309, 127705.	4.0	22
25	Effect of Er doping on flame-made SnO2 nanoparticles to ethylene oxide sensing. Sensors and Actuators B: Chemical, 2021, 328, 129022.	4.0	18
26	Catalytic roles of Sm2O3 dopants on ethylene oxide sensing mechanisms of flame-made SnO2 nanoparticles. Applied Surface Science, 2018, 454, 30-45.	3.1	15
27	Single-Nozzle Flame Synthesis of Spinel Znâ"SnOâ," Nanoparticles for Selective Detection of Formic Acid. IEEE Sensors Journal, 2020, 20, 6256-6262.	2.4	15
28	Flame-spray-made Zn In O alloyed nanoparticles for NO2 gas sensing. Journal of Alloys and Compounds, 2016, 680, 711-721.	2.8	13
29	Ultra-responsive and selective of formic acid sensors based on flame-made SnO2 nanoparticles loaded with core-shell Ir-IrO2 nanocatalysts. Sensors and Actuators B: Chemical, 2021, 340, 129973.	4.0	11
30	Selectivity towards acetylene gas of flame-spray-made Nb-substituted SnO2 particulate thick films. Sensors and Actuators B: Chemical, 2021, 349, 130808.	4.0	9
31	Chemophysical acetylene-sensing mechanisms of Sb ₂ O ₃ /NaWO ₄ -doped WO ₃ heterointerfaces. Physical Chemistry Chemical Physics, 2020, 22, 20482-20498.	1.3	1