Miguel Beato

List of Publications by Citations

Source: https://exaly.com/author-pdf/3773651/miguel-beato-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28,334 166 69 253 h-index g-index citations papers 261 6.91 29,679 12 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
253	The nuclear receptor superfamily: the second decade. <i>Cell</i> , 1995 , 83, 835-9	56.2	5950
252	Gene regulation by steroid hormones. <i>Cell</i> , 1989 , 56, 335-44	56.2	3193
251	Steroid hormone receptors: many actors in search of a plot. <i>Cell</i> , 1995 , 83, 851-7	56.2	1611
250	A unified nomenclature system for the nuclear receptor superfamily. <i>Cell</i> , 1999 , 97, 161-3	56.2	965
249	Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce human metallothionein-IIA gene. <i>Nature</i> , 1984 , 308, 513-9	50.4	947
248	The glucocorticoid receptor binds to defined nucleotide sequences near the promoter of mouse mammary tumour virus. <i>Nature</i> , 1983 , 304, 749-52	50.4	631
247	Cloning by recognition site screening of two novel GT box binding proteins: a family of Sp1 related genes. <i>Nucleic Acids Research</i> , 1992 , 20, 5519-25	20.1	545
246	Activation of the Src/p21ras/Erk pathway by progesterone receptor via cross-talk with estrogen receptor. <i>EMBO Journal</i> , 1998 , 17, 2008-18	13	494
245	Steroid hormone receptors: interaction with deoxyribonucleic acid and transcription factors. <i>Endocrine Reviews</i> , 1993 , 14, 459-79	27.2	476
244	Negative regulation by glucocorticoids through interference with a cAMP responsive enhancer. <i>Science</i> , 1988 , 241, 350-3	33.3	451
243	Steroid hormone receptors: an update. <i>Human Reproduction Update</i> , 2000 , 6, 225-36	15.8	440
242	Nucleosome positioning modulates accessibility of regulatory proteins to the mouse mammary tumor virus promoter. <i>Cell</i> , 1990 , 60, 719-31	56.2	439
241	Glucocorticoid and progesterone receptors bind to the same sites in two hormonally regulated promoters. <i>Nature</i> , 1985 , 313, 706-9	50.4	344
240	Nucleosome positioning as a determinant of exon recognition. <i>Nature Structural and Molecular Biology</i> , 2009 , 16, 996-1001	17.6	337
239	Interaction of steroid hormone receptors with the transcription initiation complex. <i>Endocrine Reviews</i> , 1996 , 17, 587-609	27.2	336
238	Sequences in the promoter region of the chicken lysozyme gene required for steroid regulation and receptor binding. <i>Cell</i> , 1984 , 37, 503-10	56.2	304
237	DNA regulatory elements for steroid hormones. <i>The Journal of Steroid Biochemistry</i> , 1989 , 32, 737-47		247

236	Glucocorticoid responsiveness of the transcriptional enhancer of Moloney murine sarcoma virus. <i>Cell</i> , 1986 , 46, 283-90	56.2	243
235	Contacts between hormone receptor and DNA double helix within a glucocorticoid regulatory element of mouse mammary tumor virus. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1984 , 81, 3029-33	11.5	229
234	Ubiquitous transcription factor OTF-1 mediates induction of the MMTV promoter through synergistic interaction with hormone receptors. <i>Cell</i> , 1991 , 64, 565-72	56.2	219
233	Glucocorticoid-binding Proteins of Rat Liver Cytosol. <i>Journal of Biological Chemistry</i> , 1972 , 247, 7890-78	3964	213
232	Transcriptional control by nuclear receptors. FASEB Journal, 1991, 5, 2044-51	0.9	202
231	Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation. <i>Genes and Development</i> , 2014 , 28, 2151-62	12.6	201
230	Differential gene activation by glucocorticoids and progestins through the hormone regulatory element of mouse mammary tumor virus. <i>Cell</i> , 1988 , 53, 371-82	56.2	197
229	Transcriptional regulation by steroid hormones. <i>Steroids</i> , 1996 , 61, 240-51	2.8	194
228	Induction of progesterone target genes requires activation of Erk and Msk kinases and phosphorylation of histone H3. <i>Molecular Cell</i> , 2006 , 24, 367-81	17.6	192
227	Steroid-free glucocorticoid receptor binds specifically to mouse mammary tumour virus DNA. <i>Nature</i> , 1986 , 324, 688-91	50.4	190
226	Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming. <i>Nature Genetics</i> , 2018 , 50, 238-249	36.3	183
225	Two domains of the progesterone receptor interact with the estrogen receptor and are required for progesterone activation of the c-Src/Erk pathway in mammalian cells. <i>Molecular and Cellular Biology</i> , 2003 , 23, 1994-2008	4.8	179
224	Functional analyses of the transcription factor Sp4 reveal properties distinct from Sp1 and Sp3. Journal of Biological Chemistry, 1995 , 270, 24989-94	5.4	179
223	C/EBPIpoises B cells for rapid reprogramming into induced pluripotent stem cells. <i>Nature</i> , 2014 , 506, 235-9	50.4	153
222	Glucocorticoid-binding Proteins of Rat Liver Cytosol. <i>Journal of Biological Chemistry</i> , 1972 , 247, 7897-79	90544	146
221	Transcription factor access to chromatin. <i>Nucleic Acids Research</i> , 1997 , 25, 3559-63	20.1	144
220	Depletion of human histone H1 variants uncovers specific roles in gene expression and cell growth. <i>PLoS Genetics</i> , 2008 , 4, e1000227	6	138
219	Messenger RNA for hepatic tryptophan oxygenase: its partial purification, its translation in a heterologous cell-free system, and its control by glucocorticoid hormones. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1973 , 70, 1218-21	11.5	131

218	Control of transcription by steroid hormones. <i>Annals of the New York Academy of Sciences</i> , 1996 , 784, 93-123	6.5	122
217	bwtool: a tool for bigWig files. <i>Bioinformatics</i> , 2014 , 30, 1618-9	7.2	120
216	Interaction of glucocorticoids with rat liver nuclei. I. Role of the cytosol proteins. <i>Biochemistry</i> , 1973 , 12, 3365-71	3.2	116
215	Molecular model of the interaction between the glucocorticoid receptor and the regulatory elements of inducible genes. <i>DNA and Cell Biology</i> , 1986 , 5, 383-91		115
214	Nucleosome-driven transcription factor binding and gene regulation. <i>Molecular Cell</i> , 2013 , 49, 67-79	17.6	111
213	Two-step synergism between the progesterone receptor and the DNA-binding domain of nuclear factor 1 on MMTV minichromosomes. <i>Molecular Cell</i> , 1999 , 4, 45-54	17.6	110
212	Histone H1 subtypes differentially modulate chromatin condensation without preventing ATP-dependent remodeling by SWI/SNF or NURF. <i>PLoS ONE</i> , 2009 , 4, e0007243	3.7	109
211	ADP-ribose-derived nuclear ATP synthesis by NUDIX5 is required for chromatin remodeling. <i>Science</i> , 2016 , 352, 1221-5	33.3	101
210	Transformation-dependent susceptibility of rat hepatic stellate cells to apoptosis induced by soluble Fas ligand. <i>Hepatology</i> , 1998 , 28, 492-502	11.2	100
209	Isolation of eukaryotic messenger RNA on cellulose and its translation in vitro. <i>Biochemical and Biophysical Research Communications</i> , 1972 , 49, 680-9	3.4	100
209		3.4	100
	Biophysical Research Communications, 1972 , 49, 680-9	3.4	94
208	Biophysical Research Communications, 1972 , 49, 680-9 Gene regulation by steroid hormones. <i>The Journal of Steroid Biochemistry</i> , 1987 , 27, 9-14 Partial overlapping of binding sequences for steroid hormone receptors and DNasel hypersensitive		94
208	Biophysical Research Communications, 1972, 49, 680-9 Gene regulation by steroid hormones. The Journal of Steroid Biochemistry, 1987, 27, 9-14 Partial overlapping of binding sequences for steroid hormone receptors and DNasel hypersensitive sites in the rabbit uteroglobin gene region. Nucleic Acids Research, 1987, 15, 4535-52 Tissue-specific expression, hormonal regulation and 5Sflanking gene region of the rat Clara cell 10	20.1	94
208	Gene regulation by steroid hormones. <i>The Journal of Steroid Biochemistry</i> , 1987 , 27, 9-14 Partial overlapping of binding sequences for steroid hormone receptors and DNasel hypersensitive sites in the rabbit uteroglobin gene region. <i>Nucleic Acids Research</i> , 1987 , 15, 4535-52 Tissue-specific expression, hormonal regulation and 5Sflanking gene region of the rat Clara cell 10 kDa protein: comparison to rabbit uteroglobin. <i>Nucleic Acids Research</i> , 1990 , 18, 2939-46 CDK2-dependent activation of PARP-1 is required for hormonal gene regulation in breast cancer	20.1	94 92 91
208207206205	Gene regulation by steroid hormones. <i>The Journal of Steroid Biochemistry</i> , 1987 , 27, 9-14 Partial overlapping of binding sequences for steroid hormone receptors and DNasel hypersensitive sites in the rabbit uteroglobin gene region. <i>Nucleic Acids Research</i> , 1987 , 15, 4535-52 Tissue-specific expression, hormonal regulation and 5Sflanking gene region of the rat Clara cell 10 kDa protein: comparison to rabbit uteroglobin. <i>Nucleic Acids Research</i> , 1990 , 18, 2939-46 CDK2-dependent activation of PARP-1 is required for hormonal gene regulation in breast cancer cells. <i>Genes and Development</i> , 2012 , 26, 1972-83 Receptors for glucocorticosteroid and progesterone recognize distinct features of a DNA regulatory element. <i>Proceedings of the National Academy of Sciences of the United States of America</i> ,	20.1	94 92 91 90 89
208 207 206 205	Gene regulation by steroid hormones. <i>The Journal of Steroid Biochemistry</i> , 1987 , 27, 9-14 Partial overlapping of binding sequences for steroid hormone receptors and DNasel hypersensitive sites in the rabbit uteroglobin gene region. <i>Nucleic Acids Research</i> , 1987 , 15, 4535-52 Tissue-specific expression, hormonal regulation and 5Sflanking gene region of the rat Clara cell 10 kDa protein: comparison to rabbit uteroglobin. <i>Nucleic Acids Research</i> , 1990 , 18, 2939-46 CDK2-dependent activation of PARP-1 is required for hormonal gene regulation in breast cancer cells. <i>Genes and Development</i> , 2012 , 26, 1972-83 Receptors for glucocorticosteroid and progesterone recognize distinct features of a DNA regulatory element. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1986 , 83, 2817-21 Four enzymes cooperate to displace histone H1 during the first minute of hormonal gene	20.1 20.1 12.6 11.5	94 92 91 90 89 88

(2013-1995)

200	Members of the Sp transcription factor family control transcription from the uteroglobin promoter. Journal of Biological Chemistry, 1995 , 270, 12737-44	5.4	85	
199	Sequences downstream of the glucocorticoid regulatory element mediate cycloheximide inhibition of steroid induced expression from the rat alpha 1-acid glycoprotein promoter: evidence for a labile transcription factor. <i>Molecular Endocrinology</i> , 1988 , 2, 1343-51		84	
198	On the mechanism of hormone action. XV. Subcellular distribution and binding of (1,2-3H)cortisol in rat liver. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 1969 , 192, 494-507	4	81	
197	The uteroglobin promoter contains a noncanonical estrogen responsive element. <i>Molecular Endocrinology</i> , 1990 , 4, 604-10		79	
196	Interaction of glucocorticoids with rat liver nuclei. II. Studies on the nature of the cytosol transfer factor and the nuclear acceptor site. <i>Biochemistry</i> , 1973 , 12, 3372-9	3.2	77	
195	Pyicos: a versatile toolkit for the analysis of high-throughput sequencing data. <i>Bioinformatics</i> , 2011 , 27, 3333-40	7.2	76	
194	Contacts between steroid hormone receptors and thymines in DNA: an interference method. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1990 , 87, 7180-4	11.5	76	
193	Structural features of a regulatory nucleosome. <i>Journal of Molecular Biology</i> , 1990 , 216, 975-90	6.5	76	
192	Binding of hormone accelerates the kinetics of glucocorticoid and progesterone receptor binding to DNA. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1989 , 86, 1123-	- 7 1.5	73	
191	Correlation between glucocorticoid binding to specific liver cytosol receptors and enzyme induction in vivo. <i>Biochemical and Biophysical Research Communications</i> , 1972 , 47, 1464-72	3.4	73	
190	Efficient binding of glucocorticoid receptor to its responsive element requires a dimer and DNA flanking sequences. <i>DNA and Cell Biology</i> , 1990 , 9, 355-68	3.6	72	
189	Purification and quaternary structure of the hormonally induced protein uteroglobin. <i>Archives of Biochemistry and Biophysics</i> , 1977 , 180, 82-92	4.1	72	
188	Nucleosome-mediated synergism between transcription factors on the mouse mammary tumor virus promoter. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1997 , 94, 2885-90	11.5	71	
187	Swi3p controls SWI/SNF assembly and ATP-dependent H2A-H2B displacement. <i>Nature Structural and Molecular Biology</i> , 2007 , 14, 540-7	17.6	71	
186	The uteroglobin gene region: hormonal regulation, repetitive elements and complete nucleotide sequence of the gene. <i>Nucleic Acids Research</i> , 1983 , 11, 2257-71	20.1	71	
185	Interaction of glucocorticoids with rat liver nuclei: effect of adrenalectomy and cortisol administration. <i>Endocrinology</i> , 1974 , 94, 377-87	4.8	70	
184	Progesterone receptor stimulates transcription of mouse mammary tumour virus in a cell-free system. <i>Nature</i> , 1990 , 344, 360-2	50.4	69	
183	Unliganded progesterone receptor-mediated targeting of an RNA-containing repressive complex silences a subset of hormone-inducible genes. <i>Genes and Development</i> , 2013 , 27, 1179-97	12.6	66	

182	Human CC10, the homologue of rabbit uteroglobin: genomic cloning, chromosomal localization and expression in endometrial cell lines. <i>Human Molecular Genetics</i> , 1992 , 1, 371-8	5.6	65
181	On the mechanism of hormone action. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 1970 , 208, 125-1	136	64
180	C/EBP[Activates Pre-existing and De Novo Macrophage Enhancers during Induced Pre-B Cell Transdifferentiation and Myelopoiesis. <i>Stem Cell Reports</i> , 2015 , 5, 232-47	8	62
179	Histone H1 enhances synergistic activation of the MMTV promoter in chromatin. <i>EMBO Journal</i> , 2003 , 22, 588-99	13	62
178	Binding of progesterone to the proteins of the uterine luminal fluid. Identification of uteroglobin as the binding protein. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 1975 , 392, 346-56	4	61
177	Progesterone induction of metallothionein-IIA gene expression. <i>Molecular Endocrinology</i> , 1988 , 2, 485-9	91	60
176	Promoter choice influences alternative splicing and determines the balance of isoforms expressed from the mouse bcl-X gene. <i>Journal of Biological Chemistry</i> , 2001 , 276, 21062-9	5.4	59
175	Chromatin structure and the regulation of gene expression: remodeling at the MMTV promoter. <i>Journal of Molecular Medicine</i> , 1996 , 74, 711-24	5.5	59
174	Binding of steroids to uteroglobin. <i>The Journal of Steroid Biochemistry</i> , 1976 , 7, 327-34		59
173	On the mechanism of hormone action. XII. Uptake of 1,2-3H-cortisol by isolated rat liver nuclei. <i>Experimental Cell Research</i> , 1969 , 55, 107-17	4.2	59
172	Amino acid sequence of progesterone-induced rabbit uteroglobin. <i>Biochemistry</i> , 1978 , 17, 3908-12	3.2	56
171	Chromatin and RNA Maps Reveal Regulatory Long Noncoding RNAs in Mouse. <i>Molecular and Cellular Biology</i> , 2015 , 36, 809-19	4.8	55
170	Progestin activation of nongenomic pathways via cross talk of progesterone receptor with estrogen receptor beta induces proliferation of endometrial stromal cells. <i>Molecular Endocrinology</i> , 2005 , 19, 3023-37		54
169	The effect of cortisol on the binding of actinomycin D to and on the template activity of isolated rat liver chromatin. <i>Archives of Biochemistry and Biophysics</i> , 1970 , 138, 272-84	4.1	54
168	Steroid hormones induce bcl-X gene expression through direct activation of distal promoter P4. Journal of Biological Chemistry, 2004 , 279, 9831-9	5.4	52
167	The mouse mammary tumour virus promoter positioned on a tetramer of histones H3 and H4 binds nuclear factor 1 and OTF1. <i>Journal of Molecular Biology</i> , 1998 , 278, 725-39	6.5	51
166	Progestins prevent apoptosis in a rat endometrial cell line and increase the ratio of bcl-XL to bcl-XS. Journal of Biological Chemistry, 1997 , 272, 11791-8	5.4	50
165	All human genes of the uteroglobin family are localized on chromosome 11q12.2 and form a dense cluster. <i>Annals of the New York Academy of Sciences</i> , 2000 , 923, 25-42	6.5	50

(2011-1994)

164	Antiprogestins prevent progesterone receptor binding to hormone responsive elements in vivo. Proceedings of the National Academy of Sciences of the United States of America, 1994 , 91, 11333-7	11.5	48	
163	Translation of 26 S virus-specific RNA from Semliki Forest virus-infected cells in vitro. <i>Virology</i> , 1974 , 61, 120-8	3.6	48	
162	Binding of NF1 to the MMTV promoter in nucleosomes: influence of rotational phasing, translational positioning and histone H1. <i>Nucleic Acids Research</i> , 1997 , 25, 3733-42	20.1	47	
161	PLK1 signaling in breast cancer cells cooperates with estrogen receptor-dependent gene transcription. <i>Cell Reports</i> , 2013 , 3, 2021-32	10.6	45	
160	Mechanisms involved in tissue-specific apopotosis regulated by glucocorticoids. <i>Journal of Steroid Biochemistry and Molecular Biology</i> , 2008 , 109, 273-8	5.1	45	
159	Interplay of steroid hormone receptors and transcription factors on the mouse mammary tumor virus promoter. <i>Journal of Steroid Biochemistry and Molecular Biology</i> , 1992 , 43, 365-78	5.1	45	
158	Translation of the mRNA for rabbit uteroglobin in cell-free systems. Evidence for a precursor protein. <i>FEBS Journal</i> , 1976 , 64, 15-25		44	
157	Photoaffinity labeling of steroid binding proteins with unmodified ligands. FEBS Journal, 1981, 119, 10	1-6	43	
156	Properties of the partially purified activated glucocorticoid receptor of rat liver. Binding to chromatin subunits. <i>Biochemistry</i> , 1977 , 16, 4694-703	3.2	43	
155	A fraction enriched in a novel glucocorticoid receptor-interacting protein stimulates receptor-dependent transcription in vitro. <i>Journal of Biological Chemistry</i> , 1995 , 270, 30755-9	5.4	42	
154	Two chromatin remodeling activities cooperate during activation of hormone responsive promoters. <i>PLoS Genetics</i> , 2009 , 5, e1000567	6	42	
153	Minireview: role of kinases and chromatin remodeling in progesterone signaling to chromatin. <i>Molecular Endocrinology</i> , 2010 , 24, 2088-98		41	
152	Hormone-induced recruitment of Sp1 mediates estrogen activation of the rabbit uteroglobin gene in endometrial epithelium. <i>Journal of Biological Chemistry</i> , 1998 , 273, 4360-6	5.4	41	
151	Two cortisol binding proteins from rat liver cytosol. <i>Biochimica Et Biophysica Acta (BBA) - Protein Structure</i> , 1972 , 263, 764-74		41	
150	Cell-free translation of the globin message within polydisperse high-molecular-weight ribonucleic acid of avian erythrocytes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1973 , 70, 3641-5	11.5	41	
149	DNA rotational positioning in a regulatory nucleosome is determined by base sequence. An algorithm to model the preferred superhelix. <i>Nucleic Acids Research</i> , 1990 , 18, 6981-7	20.1	40	
148	In vitro translation of 42 S virus-specific RNA from cells infected with the flavivirus West Nile virus. <i>Virology</i> , 1979 , 96, 516-29	3.6	40	
147	BRCA1 counteracts progesterone action by ubiquitination leading to progesterone receptor degradation and epigenetic silencing of target promoters. <i>Cancer Research</i> , 2011 , 71, 3422-31	10.1	39	

146	Interaction of steroid hormone receptors with transcription factors involves chromatin remodelling. <i>Journal of Steroid Biochemistry and Molecular Biology</i> , 1996 , 56, 47-59	5.1	38
145	RNA synthesis in rabbit endometrial nuclei. Hormonal regulation of transcription of the uteroglobin gene. <i>FEBS Journal</i> , 1980 , 112, 235-41		37
144	Regulation of androgen receptor mRNA and protein level by steroid hormones in human mammary cancer cells. <i>Journal of Steroid Biochemistry and Molecular Biology</i> , 1992 , 43, 599-607	5.1	36
143	Mechanism of gene regulation by steroid hormones. <i>The Journal of Steroid Biochemistry</i> , 1986 , 24, 19-2	4	36
142	Isolation and structure of the gene for the progesterone-inducible protein uteroglobin. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1982 , 79, 4853-7	11.5	36
141	Induction of transcription by steroid hormones. <i>Biochimica Et Biophysica Acta Gene Regulatory Mechanisms</i> , 1987 , 910, 95-102		35
140	OneD: increasing reproducibility of Hi-C samples with abnormal karyotypes. <i>Nucleic Acids Research</i> , 2018 , 46, e49	20.1	34
139	Progesterone induction of the 11beta-hydroxysteroid dehydrogenase type 2 promoter in breast cancer cells involves coordinated recruitment of STAT5A and progesterone receptor to a distal enhancer and polymerase tracking. <i>Molecular and Cellular Biology</i> , 2008 , 28, 3830-49	4.8	33
138	Arginine Citrullination at the C-Terminal Domain Controls RNA Polymerase II Transcription. <i>Molecular Cell</i> , 2019 , 73, 84-96.e7	17.6	33
137	Progesterone signaling in breast and endometrium. <i>Journal of Steroid Biochemistry and Molecular Biology</i> , 2006 , 102, 2-10	5.1	32
136	Novel upstream elements and the TATA-box region mediate preferential transcription from the uteroglobin promoter in endometrial cells. <i>Nucleic Acids Research</i> , 1991 , 19, 2849-59	20.1	32
135	Chromatin remodeling and control of cell proliferation by progestins via cross talk of progesterone receptor with the estrogen receptors and kinase signaling pathways. <i>Annals of the New York Academy of Sciences</i> , 2006 , 1089, 59-72	6.5	31
134	Hormonal regulation of vitellogenin genes: an estrogen-responsive element in the Xenopus A2 gene and a multihormonal regulatory region in the chicken II gene. <i>Molecular Endocrinology</i> , 1991 , 5, 386-96		31
133	The promoter of the rat 3-hydroxy-3-methylglutaryl coenzyme A reductase gene contains a tissue-specific estrogen-responsive region. <i>Molecular Endocrinology</i> , 1999 , 13, 1225-36		30
132	A model for hormone receptor binding to the mouse mammary tumour virus regulatory element based on hydroxyl radical footprinting. <i>Nucleic Acids Research</i> , 1988 , 16, 10237-47	20.1	30
131	The activated glucocorticoid receptor of rat liver. Purification and physical characterization. <i>FEBS Journal</i> , 1980 , 106, 395-403		30
130	Steroid hormone receptors: interaction with deoxyribonucleic acid and transcription factors 1993 , 14, 459-479		30
129	Assembly of MMTV promoter minichromosomes with positioned nucleosomes precludes NF1 access but not restriction enzyme cleavage. <i>Nucleic Acids Research</i> , 1998 , 26, 3657-66	20.1	29

128	TFIIIC Binding to Alu Elements Controls Gene Expression via Chromatin Looping and Histone Acetylation. <i>Molecular Cell</i> , 2020 , 77, 475-487.e11	17.6	29
127	Targeted NUDT5 inhibitors block hormone signaling in breast cancer cells. <i>Nature Communications</i> , 2018 , 9, 250	17.4	28
126	Hormone-induced repression of genes requires BRG1-mediated H1.2 deposition at target promoters. <i>EMBO Journal</i> , 2016 , 35, 1822-43	13	28
125	Cell-specific, developmentally and hormonally regulated expression of the rabbit uteroglobin transgene and the endogenous mouse uteroglobin gene in transgenic mice. <i>Mechanisms of Development</i> , 1991 , 34, 57-67	1.7	28
124	Translation of the messenger RNA for rabbit uteroglobin in Xenopus oocytes. <i>FEBS Letters</i> , 1975 , 59, 305-9	3.8	28
123	Hormone-control regions mediate steroid receptor-dependent genome organization. <i>Genome Research</i> , 2019 , 29, 29-39	9.7	28
122	Impact of chromatin structure and dynamics on PR signaling. The initial steps in hormonal gene regulation. <i>Molecular and Cellular Endocrinology</i> , 2012 , 357, 37-42	4.4	27
121	Two wavelength femtosecond laser induced DNA-protein crosslinking. <i>Nucleic Acids Research</i> , 1998 , 26, 3967-70	20.1	27
120	Transcriptional control by steroid hormones. <i>Journal of Steroid Biochemistry and Molecular Biology</i> , 1992 , 41, 241-8	5.1	27
119	Synthesis and secretion of uteroglobin in rabbit endometrial explants cultured in vitro. <i>Molecular and Cellular Endocrinology</i> , 1980 , 17, 25-39	4.4	27
118	Mutational analysis of progesterone receptor functional domains in stable cell lines delineates sets of genes regulated by different mechanisms. <i>Molecular Endocrinology</i> , 2009 , 23, 809-26		26
117	Crosslinking of progesterone receptor to DNA using tuneable nanosecond, picosecond and femtosecond UV laser pulses. <i>Nucleic Acids Research</i> , 1997 , 25, 2478-84	20.1	26
116	Convergence on chromatin of non-genomic and genomic pathways of hormone signaling. <i>Journal of Steroid Biochemistry and Molecular Biology</i> , 2008 , 109, 344-9	5.1	26
115	Chromatin structure modulates transcription factor binding to the mouse mammary tumor virus (MMTV) promoter. <i>Journal of Steroid Biochemistry and Molecular Biology</i> , 1993 , 47, 1-10	5.1	26
114	Characterization of the progesterone receptor of rabbit uterus with the synthetic progestin 16Ethyl-21-hydroxy-19-norpregn-4-ene-3,20-dione. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 1978 , 540, 500-517	4	26
113	The chromatin Remodeler CHD8 is required for activation of progesterone receptor-dependent enhancers. <i>PLoS Genetics</i> , 2015 , 11, e1005174	6	25
112	Relationship between nucleosome positioning and progesterone-induced alternative splicing in breast cancer cells. <i>Rna</i> , 2015 , 21, 360-74	5.8	24
111	Two independent pathways for transcription from the MMTV promoter. <i>Journal of Steroid Biochemistry and Molecular Biology</i> , 1994 , 51, 21-32	5.1	24

110	Effect of phospholipases and lysophosphatides on partially purified steroid hormone receptors. Hoppe-Seylerjs Zeitschrift Fil Physiologische Chemie, 1978 , 359, 1297-305		24
109	The proviral DNA of mouse mammary tumor virus: its use in the study of the molecular details of steroid hormone action. <i>Molecular and Cellular Endocrinology</i> , 1983 , 32, 101-16	4.4	23
108	On the mechanism of hormone action, X. Increased template activity for RNA synthesis of rat liver nuclei incubated with cortisol "in vitro". <i>Hoppe-Seylerjs Zeitschrift FII Physiologische Chemie</i> , 1968 , 349, 1099-104		23
107	Rapid reversible changes in compartments and local chromatin organization revealed by hyperosmotic shock. <i>Genome Research</i> , 2019 , 29, 18-28	9.7	23
106	Spectrophotometric study of progesterone binding to uteroglobin. <i>The Journal of Steroid Biochemistry</i> , 1977 , 8, 725-30		22
105	Daughter-cell-specific modulation of nuclear pore complexes controls cell cycle entry during asymmetric division. <i>Nature Cell Biology</i> , 2018 , 20, 432-442	23.4	21
104	Signaling by Steroid Hormones in the 3D Nuclear Space. <i>International Journal of Molecular Sciences</i> , 2018 , 19,	6.3	21
103	Nuclear factor 1 synergizes with progesterone receptor on the mouse mammary tumor virus promoter wrapped around a histone H3/H4 tetramer by facilitating access to the central hormone-responsive elements. <i>Journal of Biological Chemistry</i> , 2010 , 285, 2622-31	5.4	21
102	Synthesis and characterization of a DNA complementary to pre-uteroglobin mRNA. <i>FEBS Journal</i> , 1979 , 99, 361-7		21
101	Hormonal control of uteroglobin secretion and preuteroglobin mRNA content in rabbit endometrium. <i>Molecular and Cellular Endocrinology</i> , 1981 , 21, 139-50	4.4	21
100	Partial purification of the activated glucocorticord receptor of rat liver. FEBS Letters, 1976, 66, 317-21	3.8	21
99	Human uterine fluid proteins: gel electrophoretic pattern and progesterone-binding properties. <i>Fertility and Sterility</i> , 1977 , 28, 972-80	4.8	21
98	Binding of the partially purified glucocorticoid receptor of rat liver to chromatin and DNA. <i>Molecular and Cellular Endocrinology</i> , 1977 , 7, 49-66	4.4	21
97	Erk signaling and chromatin remodeling in MMTV promoter activation by progestins. <i>Nuclear Receptor Signaling</i> , 2009 , 7, e008	1	20
96	Hormone-dependent synthesis and secretion of uteroglobin in isolated rabbit uterus. <i>FEBS Letters</i> , 1975 , 58, 126-9	3.8	20
95	Partial purification of a cortisol binding protein from rat liver cytosol. <i>Steroids</i> , 1970 , 16, 207-16	2.8	20
94	ATP, Mg, Nuclear Phase Separation, and Genome Accessibility. <i>Trends in Biochemical Sciences</i> , 2019 , 44, 565-574	10.3	19
93	Activation of mitogen- and stress-activated kinase 1 is required for proliferation of breast cancer cells in response to estrogens or progestins. <i>Oncogene</i> , 2014 , 33, 1570-80	9.2	19

92	The hormone responsive region of mouse mammary tumor virus positions a nucleosome and precludes access of nuclear factor I to the promoter. <i>Journal of Steroid Biochemistry and Molecular Biology</i> , 1996 , 57, 19-31	5.1	19
91	Purification and properties of rabbit uterus preuteroglobin mRNA. <i>Nucleic Acids Research</i> , 1977 , 4, 402	3-36.1	19
90	Crystallization and preliminary crystallographic data of rabbit uteroglobin. <i>Journal of Molecular Biology</i> , 1978 , 120, 337-41	6.5	19
89	On the demultiplexing of chromosome capture conformation data. FEBS Letters, 2015, 589, 3005-13	3.8	18
88	Asymmetric binding of histone H1 stabilizes MMTV nucleosomes and the interaction of progesterone receptor with the exposed HRE. <i>Journal of Molecular Biology</i> , 2002 , 324, 501-17	6.5	18
87	Creating chimeric molecules by PCR directed homologous DNA recombination. <i>Nucleic Acids Research</i> , 1991 , 19, 2793	20.1	18
86	Activation of the progesterone receptor of rabbit uterus. <i>Molecular and Cellular Endocrinology</i> , 1979 , 16, 181-97	4.4	18
85	Interaction of oxidized and reduced uteroglobin with progesterone. FEBS Journal, 1982, 122, 101-4		18
84	Peptidyl Arginine Deiminase 2 (PADI2)-Mediated Arginine Citrullination Modulates Transcription in Cancer. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	17
83	Glucocorticoids repress bcl-X expression in lymphoid cells by recruiting STAT5B to the P4 promoter. Journal of Biological Chemistry, 2006 , 281, 33959-70	5.4	17
82	Artificial steroid hormone response element generated by dam-methylation. <i>Nucleic Acids Research</i> , 1992 , 20, 1483-6	20.1	17
81	Glucocorticoid receptor binding site in the mouse alpha-amylase 2 gene mediates response to the hormone. <i>Molecular Endocrinology</i> , 1993 , 7, 907-914		17
80	A new role for an old player: steroid receptor RNA Activator (SRA) represses hormone inducible genes. <i>Transcription</i> , 2013 , 4, 167-71	4.8	16
79	Regulation of transcription by steroid hormones. <i>Annals of the New York Academy of Sciences</i> , 1994 , 733, 103-12	6.5	16
78	Non-radioactive method to visualize specific DNA-protein interactions in the band shift assay. <i>Nucleic Acids Research</i> , 1989 , 17, 4405	20.1	16
77	Progesterone receptor induces bcl-x expression through intragenic binding sites favoring RNA polymerase II elongation. <i>Nucleic Acids Research</i> , 2013 , 41, 6072-86	20.1	15
76	Interchain cysteine bridges control entry of progesterone to the central cavity of the uteroglobin dimer. <i>Protein Engineering, Design and Selection</i> , 1992 , 5, 351-9	1.9	15
75	Protein-DNA interactions at steroid hormone regulated genes. <i>Endocrine Research</i> , 1989 , 15, 417-40	1.9	15

74	Interaction of S-carboxymethylated uteroglobin with progesterone. <i>Biochemistry</i> , 1980 , 19, 3287-93	3.2	15
73	Expression of Oncogenic Drivers in 3D Cell Culture Depends on Nuclear ATP Synthesis by NUDT5. <i>Cancers</i> , 2019 , 11,	6.6	14
72	TADs as modular and dynamic units for gene regulation by hormones. FEBS Letters, 2015, 589, 2885-92	3.8	14
71	Structural constraints revealed in consistent nucleosome positions in the genome of S. cerevisiae. <i>Epigenetics and Chromatin</i> , 2010 , 3, 20	5.8	14
70	Complex role of histone H1 in transactivation of MMTV promoter chromatin by progesterone receptor. <i>Journal of Steroid Biochemistry and Molecular Biology</i> , 2002 , 83, 15-23	5.1	14
69	Chromatin structure of the MMTV promoter and its changes during hormonal induction. <i>Cellular and Molecular Neurobiology</i> , 1996 , 16, 85-101	4.6	14
68	Binding of the glucocorticoid receptor induces a topological change in plasmids containing the hormone-responsive element of mouse mammary tumor virus. <i>DNA and Cell Biology</i> , 1990 , 9, 519-25	3.6	14
67	Isolation on cellulose of ovalbumin and globin mRNA and their translation in an ascites cell-free system. <i>Methods in Enzymology</i> , 1974 , 30, 701-8	1.7	14
66	The DNA and steroid binding domains of the glucocorticoid receptor are not altered in mononuclear cells of treated CLL patients. <i>Experimental and Clinical Endocrinology and Diabetes</i> , 1995 , 103, 175-83	2.3	13
65	Expression and functional analysis of steroid receptor fragments secreted from Staphylococcus aureus. <i>Journal of Steroid Biochemistry and Molecular Biology</i> , 1993 , 44, 1-11	5.1	13
64	Hydroxyl radical interference: a new method for the study of protein-DNA interactions. <i>Nucleic Acids Research</i> , 1989 , 17, 1783	20.1	13
63	Identification of residues essential for progesterone binding to uteroglobin by site-directed mutagenesis. <i>Journal of Steroid Biochemistry and Molecular Biology</i> , 1991 , 38, 27-33	5.1	13
62	More help than hindrance: nucleosomes aid transcriptional regulation. <i>Nucleus</i> , 2013 , 4, 189-94	3.9	12
61	Point mutation in the ligand-binding domain of the progesterone receptor generates a transdominant negative phenotype. <i>Molecular Endocrinology</i> , 1997 , 11, 1476-85		12
60	Effect of estrogens and gestagens on the initiation of DNA synthesis in the genital tract of ovariectomized mice. <i>Experimental Cell Research</i> , 1968 , 52, 173-9	4.2	12
59	Regulation of the Expression of the Uteroglobin Gene by Ovarian Hormones 1983 , 151-175		12
58	C/EBPImediates the growth inhibitory effect of progestins on breast cancer cells. <i>EMBO Journal</i> , 2019 , 38, e101426	13	10
57	Changes in global gene expression during in vitro decidualization of rat endometrial stromal cells. Journal of Cellular Physiology, 2010, 222, 127-37	7	10

(2002-2002)

56	Accurate chromatin organization of the mouse mammary tumor virus promoter determines the nature of the synergism between transcription factors. <i>Journal of Biological Chemistry</i> , 2002 , 277, 4911-	- 7 5·4	10
55	Progesterone binding to uteroglobin: two alternative orientations of the ligand. <i>Protein Engineering, Design and Selection</i> , 1995 , 8, 71-9	1.9	10
54	Unliganded Progesterone Receptor Governs Estrogen Receptor Gene Expression by Regulating DNA Methylation in Breast Cancer Cells. <i>Cancers</i> , 2018 , 10,	6.6	10
53	Expression of the uteroglobin promoter in epithelial cell lines from endometrium. <i>Annals of the New York Academy of Sciences</i> , 1991 , 622, 69-79	6.5	9
52	Influence of pyridoxal 5Sphosphate on the DNA binding activity of steroid hormone receptors and other DNA binding proteins. <i>FEBS Letters</i> , 1981 , 124, 189-92	3.8	9
51	Cytosol and nuclear progesterone-receptor concentrations in the rabbit endometrium during early pseudopregnancy under different treatments with estradiol and progesterone. <i>Molecular and Cellular Endocrinology</i> , 1982 , 25, 183-91	4.4	9
50	CDC2 mediates progestin initiated endometrial stromal cell proliferation: a PR signaling to gene expression independently of its binding to chromatin. <i>PLoS ONE</i> , 2014 , 9, e97311	3.7	9
49	An endothelial cell genetic screen identifies the GTPase Rem2 as a suppressor of p19ARF expression that promotes endothelial cell proliferation and angiogenesis. <i>Journal of Biological Chemistry</i> , 2008 , 283, 4408-16	5.4	8
48	Uteroglobin, an apically secreted protein of the uterine epithelium, is secreted non-polarized form MDCK cells and mainly basolaterally from Caco-2 cells. <i>FEBS Letters</i> , 1993 , 330, 293-6	3.8	8
47	Nuclear magnetic resonance studies on rabbit uteroglobin. <i>FEBS Letters</i> , 1977 , 83, 217-21	3.8	8
46	ParadoxSeffect of cortisol and actinomycin D on RNA polymerase activity of rat liver nuclei. <i>FEBS Letters</i> , 1968 , 1, 275-278	3.8	8
45	Insight into the machinery that oils chromatin dynamics. <i>Nucleus</i> , 2016 , 7, 532-539	3.9	7
44	When every minute counts: the enzymatic complexity associated with the activation of hormone-dependent genes. <i>Cell Cycle</i> , 2011 , 10, 2407-9	4.7	7
43	Hormone-dependent recruitment of NF-Y to the uteroglobin gene enhancer associated with chromatin remodeling in rabbit endometrial epithelium. <i>Journal of Biological Chemistry</i> , 1999 , 274, 4017	7-52 6	7
42	Transient transfection of ecotropic retrovirus receptor permits stable gene transfer into non-rodent cells with murine retroviral vectors. <i>Nucleic Acids Research</i> , 1996 , 24, 979-80	20.1	7
41	Recombinant rabbit uteroglobin expressed at high levels in E. coli forms stable dimers and binds progesterone. <i>Protein Engineering, Design and Selection</i> , 1989 , 3, 61-6	1.9	7
40	Neither the endogenous nor a functional steroid hormone receptor binding site transactivate the ribosomal RNA gene promoter in vitro. <i>Journal of Steroid Biochemistry and Molecular Biology</i> , 1991 , 39, 409-18	5.1	7
39	Differential role of the proline-rich domain of nuclear factor 1-C splice variants in DNA binding and transactivation. <i>Journal of Biological Chemistry</i> , 2002 , 277, 16383-90	5.4	6

38	A comparison of mouse and rabbit embryos for the production of transgenic animals by pronuclear microinjection. <i>Theriogenology</i> , 1990 , 34, 813-24	2.8	6
37	Atomic-resolution mapping of transcription factor-DNA interactions by femtosecond laser crosslinking and mass spectrometry. <i>Nature Communications</i> , 2020 , 11, 3019	17.4	5
36	The embryonic linker histone dBigH1 alters the functional state of active chromatin. <i>Nucleic Acids Research</i> , 2020 , 48, 4147-4160	20.1	5
35	Transcriptionally competent chromatin assembled with exogenous histones in a yeast whole cell extract. <i>Nucleic Acids Research</i> , 2004 , 32, e111	20.1	5
34	Gene Regulation by Steroid Hormones 1993 , 43-75		5
33	Influence of chemical modifications of amino acid side chains on the binding or progesterone to uteroglobin. <i>The Journal of Steroid Biochemistry</i> , 1980 , 13, 1347-53		5
32	Phenolic content of sugarcane in relation to red rot disease. <i>Experientia</i> , 1970 , 26, 1074-6		5
31	Transcriptional control by steroid hormones: the role of chromatin. <i>Novartis Foundation Symposium</i> , 1995 , 191, 7-17; discussion 17-23		5
30	Role of the NUDT Enzymes in Breast Cancer. International Journal of Molecular Sciences, 2021, 22,	6.3	5
29	Parallel sequencing lives, or what makes large sequencing projects successful. <i>GigaScience</i> , 2017 , 6, 1-6	7.6	4
28	Point Mutation in the Ligand-Binding Domain of the Progesterone Receptor Generates a Transdominant Negative Phenotype		4
27	Progesterone receptor interaction with chromatin. <i>Methods in Molecular Biology</i> , 2014 , 1204, 1-14	1.4	4
26	DNA damage and gene transcription: accident or necessity?. Cell Research, 2015, 25, 769-70	24.7	3
25	Chromatin remodeling in Drosophila preblastodermic embryo extract. Scientific Reports, 2018, 8, 10927	4.9	3
24	Steroid hormone receptors silence genes by a chromatin-targeted mechanism similar to those used for gene activation. <i>Transcription</i> , 2017 , 8, 15-20	4.8	3
23	Binding of steroid receptors to the HREs of mouse mammary tumor virus, chicken and xenopus vitellogenin and rabbit uteroglobin genes: correlation with induction. <i>The Journal of Steroid Biochemistry</i> , 1989 , 34, 11-6		3
22	90 YEARS OF PROGESTERONE: Molecular mechanisms of progesterone receptor action on the breast cancer genome. <i>Journal of Molecular Endocrinology</i> , 2020 , 65, T65-T79	4.5	3
21	Phase separation of tunable biomolecular condensates predicted by an interacting particle model		3

20	DNA Regulatory Elements for Steroid Hormone Receptors 1987, 1-27		3
19	A rapidly growing RecBC- strain of E. coli: applications for problem cloning. <i>Nucleic Acids Research</i> , 1989 , 17, 3609	20.1	2
18	Chromatin topology defines estradiol-primed progesterone receptor and PAX2 binding in endometrial cancer cells <i>ELife</i> , 2022 , 11,	8.9	2
17	A set of accessible enhancers enables the initial response of breast cancer cells to physiological progestin concentrations. <i>Nucleic Acids Research</i> , 2021 ,	20.1	2
16	Structure and Binding Properties of Rabbit Uteroglobin. Search for a Similar Protein in Human Uterine Fluid 1982 , 127-140		2
15	Regulation of transcription by glucocorticoids. <i>Molecular Aspects of Cellular Regulation</i> , 1991 , 6, 117-12	8	2
14	Parallel sequencing lives, or what makes large sequencing projects successful		2
13	Unliganded Progesterone Receptor Governs Estrogen Receptor Gene Expression by Regulating DNA Methylation in Breast Cancer Cells		2
12	Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming		2
11	OneD: increasing reproducibility of Hi-C Samples with abnormal karyotypes		2
10	High DNA-protein crosslinking yield with two-wavelength femtosecond laser irradiation. <i>Methods in Molecular Biology</i> , 2001 , 148, 611-20	1.4	1
9	Higher-order chromatin organization defines Progesterone Receptor and PAX2 binding to regulate estradiol-primed endometrial cancer gene expression		1
8	Regulation of Gene Expression by Steroid Hormones 1986 , 219-226		1
7	ADP-ribose derived Nuclear ATP is Required for Chromatin Remodeling and Hormonal Gene Regulation (97 charact)		1
6	Signalling Network of Breast Cancer Cells in Response to Progesterone		1
5	Hormone Control Regions mediate opposing steroid receptor-dependent genome organizations		1
4	MyoD induces ARTD1 and nucleoplasmic poly-ADP-ribosylation during fibroblast to myoblast transdifferentiation. <i>IScience</i> , 2021 , 24, 102432	6.1	0
3	Models of Hormone Regulation of Cancer Cells: Endometrial Carcinoma. <i>Contributions To Oncology</i> / <i>Beitrage Zur Onkologie</i> , 1995 , 50, 1-21		

- 2 Chromatin Structure and Gene Regulation by Steroid Hormones **1997**, 127-144
- Progesterone Signaling to Chromatin in Breast Cancer Cells. Two Initial Cycles of Remodeling **2012**, 19-29