
Mireille Ansaldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3773581/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel Virulent Bacteriophages Infecting Mediterranean Isolates of the Plant Pest Xylella fastidiosa and Xanthomonas albilineans. Viruses, 2021, 13, 725.	1.5	16
2	Epigenetic biosensors for bacteriophage detection and phage receptor discrimination. Environmental Microbiology, 2020, 22, 3126-3142.	1.8	7
3	Prophages in <i>Salmonella enterica</i> : a driving force in reshaping the genome and physiology of their bacterial host?. Molecular Microbiology, 2019, 111, 303-316.	1.2	52
4	Substrate-independent luminescent phage-based biosensor to specifically detect enteric bacteria such as E. coli. Environmental Science and Pollution Research, 2017, 24, 42-51.	2.7	32
5	Toward inline multiplex biodetection of metals, bacteria, and toxins in water networks: the COMBITOX project. Environmental Science and Pollution Research, 2017, 24, 1-3.	2.7	328
6	Semi-autonomous inline water analyzer: design of a common light detector for bacterial, phage, and immunological biosensors. Environmental Science and Pollution Research, 2017, 24, 66-72.	2.7	2
7	The primary pathway for lactate oxidation in Desulfovibrio vulgaris. Frontiers in Microbiology, 2015, 6, 606.	1.5	41
8	Phage-Based Fluorescent Biosensor Prototypes to Specifically Detect Enteric Bacteria Such as E. coli and Salmonella enterica Typhimurium. PLoS ONE, 2015, 10, e0131466.	1.1	60
9	Bacterial genome remodeling through bacteriophage recombination. FEMS Microbiology Letters, 2015, 362, 1-10.	0.7	52
10	Transcription termination controls prophage maintenance in <i>Escherichia coli</i> genomes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14414-14419.	3.3	38
11	Insights into the Functions of a Prophage Recombination Directionality Factor. Viruses, 2012, 4, 2417-2431.	1.5	13
12	DnaJ (Hsp40 Protein) Binding to Folded Substrate Impacts KplE1 Prophage Excision Efficiency. Journal of Biological Chemistry, 2012, 287, 14169-14177.	1.6	8
13	The Anaerobe-Specific Orange Protein Complex of Desulfovibrio vulgaris Hildenborough Is Encoded by Two Divergent Operons Coregulated by If ⁵⁴ and a Cognate Transcriptional Regulator. Journal of Bacteriology, 2011, 193, 3207-3219.	1.0	22
14	Chaperone-assisted Excisive Recombination, a Solitary Role for DnaJ (Hsp40) Chaperone in Lysogeny Escape. Journal of Biological Chemistry, 2011, 286, 38876-38885.	1.6	10
15	The Cyst-Dividing Bacterium Ramlibacter tataouinensis TTB310 Genome Reveals a Well-Stocked Toolbox for Adaptation to a Desert Environment. PLoS ONE, 2011, 6, e23784.	1.1	47
16	Protein binding sites involved in the assembly of the KplE1 prophage intasome. Virology, 2010, 404, 41-50.	1.1	13
17	Tight Regulation of the intS Gene of the KplE1 Prophage: A New Paradigm for Integrase Gene Regulation. PLoS Genetics, 2010, 6, e1001149.	1.5	17
18	P2CS: a two-component system resource for prokaryotic signal transduction research. BMC Genomics, 2009, 10, 315.	1.2	60

MIREILLE ANSALDI

#	Article	IF	CITATIONS
19	Control and Regulation of KplE1 Prophage Site-specific Recombination. Journal of Biological Chemistry, 2007, 282, 21798-21809.	1.6	24
20	Aerobic TMAO respiration in Escherichia coli. Molecular Microbiology, 2007, 66, 484-494.	1.2	35
21	Structural and Genetic Analyses Reveal a Key Role in Prophage Excision for the Torl Response Regulator Inhibitor. Journal of Biological Chemistry, 2005, 280, 36802-36808.	1.6	19
22	Torl, a response regulator inhibitor of phage origin in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9423-9428.	3.3	27
23	Genes Regulated by TorR, the Trimethylamine Oxide Response Regulator of Shewanella oneidensis. Journal of Bacteriology, 2004, 186, 4502-4509.	1.0	31
24	Diversifying Selection at the Bacillus Quorum-Sensing Locus and Determinants of Modification Specificity during Synthesis of the ComX Pheromone. Journal of Bacteriology, 2004, 186, 15-21.	1.0	46
25	Specific activation of the Bacillus quorum-sensing systems by isoprenylated pheromone variants. Molecular Microbiology, 2002, 44, 1561-1573.	1.2	166
26	Rapid Dephosphorylation of the TorR Response Regulator by the TorS Unorthodox Sensor in Escherichia coli. Journal of Bacteriology, 2001, 183, 2691-2695.	1.0	40
27	The TorR High-Affinity Binding Site Plays a Key Role in Both torR Autoregulation and torCAD Operon Expression in Escherichia coli. Journal of Bacteriology, 2000, 182, 961-966.	1.0	47
28	TorC apocytochrome negatively autoregulates the trimethylamine N-oxide (TMAO) reductase operon in Escherichia coli. Molecular Microbiology, 1999, 33, 284-295.	1.2	36
29	Transphosphorylation of the TorR response regulator requires the three phosphorylation sites of the TorS unorthodox sensor in Escherichia coli. Journal of Molecular Biology, 1997, 267, 770-777.	2.0	84
30	Site-Specific Mutagenesis by Using an Accurate Recombinant Polymerase Chain Reaction Method. Analytical Biochemistry, 1996, 234, 110-111.	1.1	90
31	Binding of the TorR regulator to cis-acting direct repeats activates tor operon expression. Molecular Microbiology, 1995, 17, 971-980.	1.2	68