Diego Valencia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3773187/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CoMo/SBA-15 catalysts prepared with EDTA and citric acid and their performance in hydrodesulfurization of dibenzothiophene. Applied Catalysis B: Environmental, 2014, 147, 879-887.	20.2	127
2	Behavior of NiMo/SBA-15 catalysts prepared with citric acid in simultaneous hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. Journal of Catalysis, 2013, 304, 29-46.	6.2	124
3	Citric acid loading for MoS2-based catalysts supported on SBA-15. New catalytic materials with high hydrogenolysis ability in hydrodesulfurization. Applied Catalysis B: Environmental, 2013, 129, 137-145.	20.2	94
4	Effect of the support composition on the characteristics of NiMo and CoMo/(Zr)SBA-15 catalysts and their performance in deep hydrodesulfurization. Catalysis Today, 2011, 166, 91-101.	4.4	54
5	Combined experimental and computational study of CO oxidation promoted by Nb in manganese oxide octahedral molecular sieves. Applied Catalysis B: Environmental, 2015, 163, 361-369.	20.2	46
6	Kinetic study of NiMo/SBA-15 catalysts prepared with citric acid in hydrodesulfurization of dibenzothiophene. Catalysis Communications, 2012, 21, 77-81.	3.3	35
7	Unravelling the chemical reactions of fatty acids and triacylglycerides under hydrodeoxygenation conditions based on a comprehensive thermodynamic analysis. Biomass and Bioenergy, 2018, 112, 37-44.	5.7	24
8	Protonated thiophene-based oligomers as formed within zeolites: understanding their electron delocalization and aromaticity. Physical Chemistry Chemical Physics, 2016, 18, 2080-2086.	2.8	17
9	Aromaticity of five- and six-membered heterocycles present in crude oils – An electronic description for hydrotreatment process. Fuel, 2012, 100, 177-185.	6.4	16
10	Ni-Based heterogeneous catalysts for the transformation of fatty acids into higher yields of O-free hydrocarbons. Green Chemistry, 2020, 22, 3470-3480.	9.0	12
11	Electronic Structure and Mesoscopic Simulations of Nonylphenol Ethoxylate Surfactants. A Combined DFT and DPD Study. Molecules, 2013, 18, 9441-9450.	3.8	10
12	Metal–support interactions revisited by theoretical calculations: The influence of organic ligands for preparing Ni/SiO2 catalysts. Applied Catalysis A: General, 2014, 475, 134-139.	4.3	10
13	Adsorption of Biomass-Derived Products on MoO ₃ : Hydrogen Bonding Interactions under the Spotlight. ACS Omega, 2018, 3, 14165-14172.	3.5	10
14	Refractory Character of 4,6-Dialkyldibenzothiophenes: Structural and Electronic Instabilities Reign Deep Hydrodesulfurization. ChemistrySelect, 2018, 3, 8849-8856.	1.5	9
15	Paving the way towards green catalytic materials for green fuels: impact of chemical species on Mo-based catalysts for hydrodeoxygenation. RSC Advances, 2019, 9, 18292-18301.	3.6	9
16	Insights into the structure–property–activity relationship in molybdenum-doped octahedral molecular sieve manganese oxides for catalytic oxidation. Catalysis Science and Technology, 2018, 8, 6493-6502.	4.1	8
17	MoO3-based catalysts supported on SiO2 and their performance in hydrodeoxygenation. Materials Letters, 2019, 251, 226-229.	2.6	8
18	Elucidating the structure of light absorbing styrene carbocation species formed within zeolites. Physical Chemistry Chemical Physics, 2017, 19, 15050-15058.	2.8	6

DIEGO VALENCIA

#	Article	IF	CITATIONS
19	Molecular Graph Modularity as a Descriptor for Property Estimation—Application to the Viscosity of Biomass-Derived Molecules. ACS Sustainable Chemistry and Engineering, 2021, 9, 7044-7052.	6.7	6
20	Topological and Electronic Structure of Heterocyclic Compounds Adsorbed on Hydrotreating Catalysts. Catalysis Letters, 2013, 143, 1354-1361.	2.6	5
21	Ultra-low loading of Ni in catalysts supported on mesoporous SiO ₂ and their performance in hydrodeoxygenation of palmitic acid. New Journal of Chemistry, 2020, 44, 2435-2441.	2.8	5
22	Development of bio-inspired supports based on Ca–SiO2 and their use in hydrodeoxygenation of palmitic acid. Renewable Energy, 2020, 148, 1034-1040.	8.9	4
23	Effect of confinement space on adsorption energy and electronic structure of molecule-metal pairs. Structural Chemistry, 2020, 31, 233-241.	2.0	2
24	Tuning redox and chemical characteristics of Mo-based catalysts for bioenergy applications – The case of catalysts supported on TiO2 or ZrO2. Materials Today Communications, 2019, 20, 100543.	1.9	1
25	Cu/KIT-5 catalysts for hydrogenation of fatty acids: a comprehensive study of the chemical species and their performance. SN Applied Sciences, 2020, 2, 1.	2.9	1