
Aleksandr Glotov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3773066/publications.pdf Version: 2024-02-01

ALEKSANDE CLOTOV

#	Article	lF	CITATIONS
1	Core-shell catalysts with CoMoS phase embedded in clay nanotubes for dibenzothiophene hydrodesulfurization. Catalysis Today, 2022, 397-399, 121-128.	2.2	8
2	Structured composite catalyst Pd/Ce0.75Zr0.25O2-x/Î,-Al2O3/FeCrAlloy for complete oxidation of methane. Materials Letters, 2022, 310, 131481.	1.3	5
3	Natural aluminosilicate nanotubes loaded with RuCo as nanoreactors for Fischer-Tropsch synthesis. Science and Technology of Advanced Materials, 2022, 23, 17-30.	2.8	5
4	Nanoarchitectural approach for synthesis of highly crystalline zeolites with a low Si/Al ratio from natural clay nanotubes. Microporous and Mesoporous Materials, 2022, 330, 111622.	2.2	13
5	CdS Quantum Dots in Hierarchical Mesoporous Silica Templated on Clay Nanotubes: Implications for Photocatalytic Hydrogen Production. ACS Applied Nano Materials, 2022, 5, 605-614.	2.4	16
6	Hydrodeoxygenation of guaiacol via in situ H2 generated through a water gas shift reaction over dispersed NiMoS catalysts from oil-soluble precursors: Tuning the selectivity towards cyclohexene. Applied Catalysis B: Environmental, 2022, 312, 121403.	10.8	24
7	Architectural design of core–shell nanotube systems based on aluminosilicate clay. Nanoscale Advances, 2022, 4, 2823-2835.	2.2	22
8	Biofuels energetics: Measurements and evaluation of calorific values of triglycerides. Fuel, 2022, 326, 125101.	3.4	1
9	Synthesis and studies of structured support Ce0.75Zr0.25O2/Î,-Al2O3/FeCrAl. Materials Letters, 2021, 283, 128855.	1.3	3
10	Structured catalytic burner for deep oxidation of hydrocarbons. Catalysis Communications, 2021, 149, 106198.	1.6	2
11	Enhanced HDS and HYD activity of sulfide Co-PMo catalyst supported on alumina and structured mesoporous silica composite. Catalysis Today, 2021, 377, 82-91.	2.2	25
12	Nanoreactors based on hydrophobized tubular aluminosilicates decorated with ruthenium: Highly active and stable catalysts for aromatics hydrogenation. Catalysis Today, 2021, 378, 33-42.	2.2	26
13	Dispersed Ni-Mo sulfide catalysts from water-soluble precursors for HDS of BT and DBT via in situ produced H2 under Water gas shift conditions. Applied Catalysis B: Environmental, 2021, 282, 119616.	10.8	29
14	Natural clay nanotube supported Mo and W catalysts for exhaustive oxidative desulfurization of model fuels. Pure and Applied Chemistry, 2021, 93, 231-241.	0.9	8
15	Influence of the Procedure for Preparing Ruthenium Nanoparticles on the Internal Surface of Aluminosilicate Nanotubes on Their Catalytic Properties in Benzene Hydrogenation in the Presence of Water. Petroleum Chemistry, 2021, 61, 676.	0.4	2
16	Structured catalysts for the conversion of liquefied petroleum gas to hydrogen-rich gas and for anode off-gas afterburning. International Journal of Hydrogen Energy, 2021, 46, 35853-35865.	3.8	3
17	Heterogeneous Catalysts for Petrochemical Synthesis and Oil Refining. Catalysts, 2021, 11, 602.	1.6	3
18	Synthesis, Physicochemical Properties, and Strength Profile of Hydroprocessing Catalyst Supports Based on Aluminosilicate Halloysite Nanotubes. Chemistry and Technology of Fuels and Oils, 2021, 57, 250.	0.2	3

ALEKSANDR GLOTOV

#	Article	IF	CITATIONS
19	The mesoporous silicate-alumina composites application as supports for bifunctional sulfide catalysts for n-hexadecane hydroconversion. Journal of Porous Materials, 2021, 28, 1449-1458.	1.3	3
20	Micro-Mesoporous Catalyst Based on Natural Aluminosilicate Nanotubes and ZSM-5 Zeolite for Methanol Conversion to Hydrocarbons. Petroleum Chemistry, 2021, 61, 773-780.	0.4	2
21	Hydroconversion of n-Hexadecane on Zeolite-Containing Sulfide-Based Catalysts: Influence of Nitrogen Impurity in the Feedstock on the Hydroisomerization Selectivity. Petroleum Chemistry, 2021, 61, 739-747.	0.4	2
22	CuO-In2O3 Catalysts Supported on Halloysite Nanotubes for CO2 Hydrogenation to Dimethyl Ether. Catalysts, 2021, 11, 1151.	1.6	8
23	Ruthenium-Containing Catalysts Based on Halloysite Aluminosilicate Nanotubes of Different Origin in Benzene Hydrogenation. Petroleum Chemistry, 2021, 61, 1104-1110.	0.4	2
24	Bizeolite Pt/ZSM-5:ZSM-12/Al2O3 catalyst for hydroisomerization of C-8 fraction with various ethylbenzene content. Catalysis Today, 2021, 378, 83-95.	2.2	9
25	Clay nanotube-metal core/shell catalysts for hydroprocesses. Chemical Society Reviews, 2021, 50, 9240-9277.	18.7	73
26	CO ₂ hydrogenation to dimethyl ether over In ₂ O ₃ catalysts supported on aluminosilicate halloysite nanotubes. Green Processing and Synthesis, 2021, 10, 594-605.	1.3	6
27	Isomerization of Xylenes (a Review). Petroleum Chemistry, 2021, 61, 1158-1177.	0.4	8
28	Micro-Mesoporous Catalyst Based on Dealuminated Halloysite Nanotubes for Isomerization of C-8 Aromatic Fraction. Petroleum Chemistry, 2021, 61, 1085-1095.	0.4	5
29	Selective hydrogenation of terminal alkynes over palladium nanoparticles within the pores of amino-modified porous aromatic frameworks. Catalysis Today, 2020, 357, 176-184.	2.2	22
30	Manganese and Cobalt Doped Hierarchical Mesoporous Halloysite-Based Catalysts for Selective Oxidation of p-Xylene to Terephthalic Acid. Catalysts, 2020, 10, 7.	1.6	21
31	Carbon Dioxide Reforming of Methane. Russian Journal of Applied Chemistry, 2020, 93, 765-787.	0.1	12
32	Micro-mesoporous MCM-41/ZSM-5 supported Pt and Pd catalysts for hydroisomerization of C-8 aromatic fraction. Applied Catalysis A: General, 2020, 603, 117764.	2.2	28
33	Methane Hydrate Formation in Halloysite Clay Nanotubes. ACS Sustainable Chemistry and Engineering, 2020, 8, 7860-7868.	3.2	37
34	Transition Metal Sulfides- and Noble Metal-Based Catalysts for N-Hexadecane Hydroisomerization: A Study of Poisons Tolerance. Catalysts, 2020, 10, 594.	1.6	21
35	Ruthenium Catalysts Templated on Mesoporous MCM-41 Type Silica and Natural Clay Nanotubes for Hydrogenation of Benzene to Cyclohexane. Catalysts, 2020, 10, 537.	1.6	33
36	Selective Hydrogenation of Acetylene over Pd-Mn/Al2O3 Catalysts. Catalysts, 2020, 10, 624.	1.6	13

ALEKSANDR GLOTOV

#	Article	IF	CITATIONS
37	Halloysite as a Zeolite Catalyst Component for Converting Dimethyl Ether Into Hydrocarbons. Chemistry and Technology of Fuels and Oils, 2020, 55, 682-688.	0.2	13
38	Ru/CdS Quantum Dots Templated on Clay Nanotubes as Visibleâ€Lightâ€Active Photocatalysts: Optimization of S/Cd Ratio and Ru Content. Chemistry - A European Journal, 2020, 26, 13085-13092.	1.7	48
39	Deep Oxidative Desulfurization of Fuels in the Presence of Brönsted Acidic Polyoxometalate-Based Ionic Liquids. Molecules, 2020, 25, 536.	1.7	30
40	Effect of the ruthenium deposition method on the nanostructured catalyst activity in the deep hydrogenation of benzene. Russian Chemical Bulletin, 2020, 69, 260-264.	0.4	14
41	Hydroconversion of 2-methylnaphtalene and dibenzothiophene over sulfide catalysts in the presence of water under CO pressure. Russian Chemical Bulletin, 2020, 69, 280-288.	0.4	2
42	Ruthenium-Loaded Halloysite Nanotubes as Mesocatalysts for Fischer–Tropsch Synthesis. Molecules, 2020, 25, 1764.	1.7	29
43	Formation of ruthenium nanoparticles inside aluminosilicate nanotubes and their catalytic activity in aromatics hydrogenation: the impact of complexing agents and reduction procedure. Pure and Applied Chemistry, 2020, 92, 909-918.	0.9	6
44	Ni–Mo sulfide nanosized catalysts from water-soluble precursors for hydrogenation of aromatics under water gas shift conditions. Pure and Applied Chemistry, 2020, 92, 949-966.	0.9	14
45	The 18 th IUPAC International Symposium Macromolecular-Metal Complexes (10–13 June,) Tj ET(2q110.78	84314 rgBT 0
46	Alkali Earth Catalysts Based on Mesoporous MCM-41 and Al-SBA-15 for Sulfone Removal from Middle Distillates. ACS Omega, 2019, 4, 12736-12744.	1.6	11
47	A Study of Platinum Catalysts Based on Ordered Alâ€"ĐœĐįĐœ-41 Aluminosilicate and Natural Halloysite Nanotubes in Xylene Isomerization. Petroleum Chemistry, 2019, 59, 1226-1234.	0.4	17
48	Ruthenium Catalysts on ZSM-5/MCM-41 Micro-Mesoporous Support for Hydrodeoxygenation of Guaiacol in the Presence of Water. Russian Journal of Applied Chemistry, 2019, 92, 1170-1178.	0.1	14
49	Halloysite Based Core-Shell Nanosystems: Synthesis and Application. , 2019, , 203-256.		7
50	Interfacial Self-Assembly in Halloysite Nanotube Composites. Langmuir, 2019, 35, 8646-8657.	1.6	82
51	Bimetallic Sulfur Reduction Additives Based on Alumosilicate of Al-MCM-41 Type For Cracking Catalysts: Desulfurazing Activity vs. Ratio of Components in a Support. Russian Journal of Applied Chemistry, 2019, 92, 562-568.	0.1	3
52	Hydroconversion of Aromatic Hydrocarbons over Bimetallic Catalysts. Catalysts, 2019, 9, 384.	1.6	11
53	Templated self-assembly of ordered mesoporous silica on clay nanotubes. Chemical Communications, 2019, 55, 5507-5510.	2.2	50
54	Mesoporous Al-HMS and Al-MCM-41 supported Ni-Mo sulfide catalysts for HYD and HDS via in situ hydrogen generation through a WGSR. Catalysis Today, 2019, 329, 156-166.	2.2	36

ALEKSANDR GLOTOV

#	Article	IF	CITATIONS
55	Aluminosilicates supported La-containing sulfur reduction additives for FCC catalyst: Correlation between activity, support structure and acidity. Catalysis Today, 2019, 329, 135-141.	2.2	26
56	Mesoporous Metal Catalysts Templated on Clay Nanotubes. Bulletin of the Chemical Society of Japan, 2019, 92, 61-69.	2.0	89
57	Core-shell nanoarchitecture: Schiff-base assisted synthesis of ruthenium in clay nanotubes. Pure and Applied Chemistry, 2018, 90, 825-832.	0.9	26
58	Nanoparticles Formed onto/into Halloysite Clay Tubules: Architectural Synthesis and Applications. Chemical Record, 2018, 18, 858-867.	2.9	56
59	Bimetallic Sulfur-Reducing Additives Based on Al–MCM-41 Structured Aluminosilicate for Cracking Catalysts. Petroleum Chemistry, 2018, 58, 214-219.	0.4	7
60	Sulfur-Reducing Additives Based on Aluminosilicates Al-SBA-15 and Al-SBA-16 for Cracking catalysts. Chemistry and Technology of Fuels and Oils, 2018, 54, 15-23.	0.2	3
61	Study of the Oxidation Products of Light Oil Aromatic Compounds Using Ultrahigh Resolution Mass Spectrometry. Chemistry and Technology of Fuels and Oils, 2018, 53, 891-896.	0.2	2
62	Hydroconversion of Thiophene Derivatives over Dispersed Ni–Mo Sulfide Catalysts. Petroleum Chemistry, 2018, 58, 1227-1232.	0.4	8
63	Nanostructured Ruthenium Catalysts in Hydrogenation of Aromatic Compounds. Petroleum Chemistry, 2018, 58, 1221-1226.	0.4	24
64	Isomerization of Xylenes in the Presence of Pt-Containing Catalysts Based on Halloysite Aluminosilicate Nanotubes. Russian Journal of Applied Chemistry, 2018, 91, 1353-1362.	0.1	18
65	Hydroconversion of Oxidation Products of Sulfur-Containing Aromatic Compounds. Russian Journal of Applied Chemistry, 2018, 91, 981-989.	0.1	4
66	Oxidative Desulfurization of Fuels Using Heterogeneous Catalysts Based on MCM-41. Energy & Fuels, 2018, 32, 10898-10903.	2.5	58
67	Halloysite nanotube-based cobalt mesocatalysts for hydrogen production from sodium borohydride. Journal of Solid State Chemistry, 2018, 268, 182-189.	1.4	54
68	Hydrogenation of Aromatic Substrates over Dispersed Ni–Mo Sulfide Catalysts in System H2O/CO. Petroleum Chemistry, 2018, 58, 528-534.	0.4	9
69	Sulfur-reduction additives based on ordered hexagonal mesoporous silica in the catalytic cracking of vacuum gas oil. Theoretical Foundations of Chemical Engineering, 2017, 51, 825-829.	0.2	2
70	Core/Shell Ruthenium–Halloysite Nanocatalysts for Hydrogenation of Phenol. Industrial & Engineering Chemistry Research, 2017, 56, 14043-14052.	1.8	83
71	Two-stage oxidative desulfurization of material containing oil sludge. Theoretical Foundations of Chemical Engineering, 2017, 51, 830-834.	0.2	1
72	Mathematical Modeling of the Catalytic Cracking of Oil Sludge that has Been Subjected to Electromagnetic Activation. Chemistry and Technology of Fuels and Oils, 2016, 51, 663-672.	0.2	2

#	Article	IF	CITATIONS
73	Catalytic Cracking of Petroleum Feedstock in the Presence of Additives Derived from Cross–Linked Mesoporous Oxides for Reduction of the Sulfur Content in Liquid Products. Chemistry and Technology of Fuels and Oils, 2016, 52, 171-174.	0.2	4
74	Catalytic cracking additives based on mesoporous MCM-41 for sulfur removal. Fuel Processing Technology, 2016, 153, 50-57.	3.7	39
75	Hydrocracking of Vacuum Gas Oil on Bimetallic Ni-Mo Sulfide Catalysts Based on Mesoporous Aluminosilicate Al-HMS. Chemistry and Technology of Fuels and Oils, 2016, 52, 515-526.	0.2	3
76	Use of ionic liquids in cyclohexene epoxidation with hydrogen peroxide. Petroleum Chemistry, 2013, 53, 110-116.	0.4	5