
Andreas Schwiertz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3772659/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Resistant Starch on Symptoms, Fecal Markers, and Gut Microbiota in Parkinson's Disease — The RESISTA-PD Trial. Genomics, Proteomics and Bioinformatics, 2022, 20, 274-287.	3.0	26
2	Effects of a Supplement Containing a Cranberry Extract on Recurrent Urinary Tract Infections and Intestinal Microbiota: A Prospective, Uncontrolled Exploratory Study. , 2022, 28, 399-406.		4
3	Resilience and the Gut Microbiome: Insights from Chronically Socially Stressed Wild-Type Mice. Microorganisms, 2022, 10, 1077.	1.6	6
4	Bacterial Species Associated with Highly Allergenic Plant Pollen Yield a High Level of Endotoxins and Induce Chemokine and Cytokine Release from Human A549 Cells. Inflammation, 2022, 45, 2186-2201.	1.7	6
5	Short-chain fatty acids and intestinal inflammation in multiple sclerosis: modulation of female susceptibility by microbial products?. Autoimmunity Highlights, 2021, 12, 7.	3.9	11
6	Association between Parkinson's disease and the faecal eukaryotic microbiota. Npj Parkinson's Disease, 2021, 7, 101.	2.5	7
7	Impact of the Age of Cecal Material Transfer Donors on Alzheimer's Disease Pathology in 5xFAD Mice. Microorganisms, 2021, 9, 2548.	1.6	12
8	Impact of oral COMT-inhibitors on gut microbiota and short chain fatty acids in Parkinson's disease. Parkinsonism and Related Disorders, 2020, 70, 20-22.	1.1	12
9	Infant formula with cow's milk fat and prebiotics affects intestinal flora, but not the incidence of infections during infancy in a double-blind randomized controlled trial. Molecular and Cellular Pediatrics, 2020, 7, 6.	1.0	8
10	Dietary Wheat Amylase Trypsin Inhibitors Impact Alzheimer's Disease Pathology in 5xFAD Model Mice. International Journal of Molecular Sciences, 2020, 21, 6288.	1.8	15
11	Changes in human gut microbiota composition are linked to the energy metabolic switch during 10 d of Buchinger fasting. Journal of Nutritional Science, 2019, 8, e36.	0.7	50
12	Prospective controlled clinical study investigating longâ€ŧerm clinical parameters, patient satisfaction, and microbial contamination of zirconia implants. Clinical Implant Dentistry and Related Research, 2019, 21, 263-271.	1.6	25
13	Modulation of the Caecal Gut Microbiota of Mice by Dietary Supplement Containing Resistant Starch: Impact Is Donor-Dependent. Frontiers in Microbiology, 2019, 10, 1234.	1.5	18
14	Impact of endurance exercise and probiotic supplementation on the intestinal microbiota: a cross-over pilot study. Pilot and Feasibility Studies, 2019, 5, 76.	0.5	6
15	Effect of Parkinson's disease and related medications on the composition of the fecal bacterial microbiota. Npj Parkinson's Disease, 2019, 5, 28.	2.5	86
16	Robustness of the non-neuronal cholinergic system in rat large intestine against luminal challenges. Pflugers Archiv European Journal of Physiology, 2019, 471, 605-618.	1.3	7
17	Fecal markers of intestinal inflammation and intestinal permeability are elevated in Parkinson's disease. Parkinsonism and Related Disorders, 2018, 50, 104-107.	1.1	202
18	Diversity, specificity, co-occurrence and hub taxa of the bacterial–fungal pollen microbiome. FEMS Microbiology Ecology, 2018, 94, .	1.3	68

ANDREAS SCHWIERTZ

#	Article	IF	CITATIONS
19	Altered Gut Microbiome Composition and Tryptic Activity of the 5xFAD Alzheimer's Mouse Model. Journal of Alzheimer's Disease, 2017, 56, 775-788.	1.2	230
20	Adjunctive use of essential oils following scaling and root planing –a randomized clinical trial. BMC Complementary and Alternative Medicine, 2016, 16, 171.	3.7	21
21	A Short Definition of Terms. Advances in Experimental Medicine and Biology, 2016, 902, 1-3.	0.8	5
22	Bacterial microbiota associated with flower pollen is influenced by pollination type, and shows a high degree of diversity and speciesâ€specificity. Environmental Microbiology, 2016, 18, 5161-5174.	1.8	132
23	Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls. Parkinsonism and Related Disorders, 2016, 32, 66-72.	1.1	818
24	Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched chain fatty acid profiles and gastrointestinal complaints. Scientific Reports, 2016, 6, 26752.	1.6	233
25	Microbiota of the Human Body: Implications in Health and Disease. Preface. Advances in Experimental Medicine and Biology, 2016, 902, v.	0.8	1
26	Endotoxicity of Lipopolysaccharide as a Determinant of T-Cellâ^'Mediated Colitis Induction in Mice. Gastroenterology, 2014, 146, 765-775.	0.6	86
27	Lactobacillus rhamnosus GG Protects against Non-Alcoholic Fatty Liver Disease in Mice. PLoS ONE, 2014, 9, e80169.	1.1	228
28	Faecalibacterium prausnitzii and Crohn's Disease – is There any Connection?. Polish Journal of Microbiology, 2013, 62, 91-95.	0.6	19
29	Faecalibacterium prausnitzii and Crohn's disease - is there any connection?. Polish Journal of Microbiology, 2013, 62, 91-5.	0.6	6
30	A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. European Journal of Clinical Nutrition, 2012, 66, 53-60.	1.3	382
31	A Vegan or Vegetarian Diet Substantially Alters the Human Fecal Microbiome Composition. Gastroenterology, 2011, 140, S-306.	0.6	0
32	A new enzymatically produced 1-lactulose: A pilot study to test the bifidogenic effects. International Dairy Journal, 2011, 21, 940-948.	1.5	19
33	Microbiota in Pediatric Inflammatory Bowel Disease. Journal of Pediatrics, 2010, 157, 240-244.e1.	0.9	148
34	Microbiota and SCFA in Lean and Overweight Healthy Subjects. Obesity, 2010, 18, 190-195.	1.5	1,996
35	Human \hat{I}^2 -Defensin-2 Levels in Healthy Individuals. American Journal of Gastroenterology, 2009, 104, 2110-2110.	0.2	2
36	The Effects of Ageing on the Colonic Bacterial Microflora in Adults. Zeitschrift Fur Gastroenterologie, 2009, 47, 653-658.	0.2	59

ANDREAS SCHWIERTZ

#	Article	IF	CITATIONS
37	The Effects of Maturation on the Colonic Microflora in Infancy and Childhood. Gastroenterology Research and Practice, 2009, 2009, 1-7.	0.7	28
38	Bioactivation of Selenocysteine Derivatiives by β-Lyases Present in Common Gastrointestinal Bacterial Species. International Journal for Vitamin and Nutrition Research, 2008, 78, 169-174.	0.6	9
39	Candidaautovaccination in the treatment of vulvovaginalCandidainfections. International Journal of Gynecology and Obstetrics, 2007, 96, 130-130.	1.0	9
40	In vitro activity of essential oils on microorganisms isolated from vaginal infections. The International Journal of Essential Oil Therapeutics: Exploring the Bioactivity of Aromatic Plants, 2006, 16, 169-174.	0.7	27
41	Throwing the dice for the diagnosis of vaginal complaints?. Annals of Clinical Microbiology and Antimicrobials, 2006, 5, 4.	1.7	67
42	Effect of isomalt consumption on faecal microflora and colonic metabolism in healthy volunteers. British Journal of Nutrition, 2006, 95, 40-50.	1.2	90
43	Chapter 6 Molecular approaches in the study of gut microecology. Biology of Growing Animals, 2005, 2, 119-141.	0.3	0
44	Anaerobic Degradation of Flavonoids by Clostridium orbiscindens. Applied and Environmental Microbiology, 2003, 69, 5849-5854.	1.4	208
45	Oligonucleotide Probes That Detect Quantitatively Significant Groups of Butyrate-Producing Bacteria in Human Feces. Applied and Environmental Microbiology, 2003, 69, 4320-4324.	1.4	284
46	Development of the Intestinal Bacterial Composition in Hospitalized Preterm Infants in Comparison with Breast-Fed, Full-Term Infants. Pediatric Research, 2003, 54, 393-399.	1.1	274
47	Ruminococcus luti sp. nov., Isolated from a Human Faecal Sample. Systematic and Applied Microbiology, 2002, 25, 189-193.	1.2	35
48	Anaerostipes caccae gen. nov., sp. nov., a New Saccharolytic, Acetate-utilising, Butyrate-producing Bacterium from Human Faeces. Systematic and Applied Microbiology, 2002, 25, 46-51.	1.2	150
49	Influence of resistant starch on the SCFA production and cell counts of butyrate-producingEubacteriumspp. in the human intestine. Journal of Applied Microbiology, 2002, 93, 157-162.	1.4	80
50	Quantification of Different <i>Eubacterium</i> spp. in Human Fecal Samples with Species-Specific 16S rRNA-Targeted Oligonucleotide Probes. Applied and Environmental Microbiology, 2000, 66, 375-382.	1.4	91
51	Anaerobic transformation of quercetin-3-glucoside by bacteria from the human intestinal tract. Archives of Microbiology, 1999, 171, 81-91.	1.0	197
52	A protocol for PCR in situ hybridization of hyphomycetes. International Microbiology, 1998, 1, 217-20.	1.1	7
53	Changes in Human Gut Microbiota Composition Are Linked to the Energy Metabolic Switch During Ten Days of Fasting. SSRN Electronic Journal, 0, , .	0.4	0