
Andrew Kerridge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3772600/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Does Reduction-Induced Isomerization of a Uranium(III) Aryl Complex Proceed via C–H Oxidative Addition and Reductive Elimination across the Uranium(II/IV) Redox Couple?. Inorganic Chemistry, 2022, 61, 8955-8965.	4.0	7
2	Structural, spectroscopic, and computational evaluations of cation–cation and halogen bonding interactions in heterometallic uranyl hybrid materials. Inorganic Chemistry Frontiers, 2021, 8, 1128-1141.	6.0	7
3	Systematic Investigation of the Molecular and Electronic Structure of Thorium and Uranium Phosphorus and Arsenic Complexes. Inorganic Chemistry, 2021, 60, 10614-10630.	4.0	15
4	Photoluminescence of Pentavalent Uranyl Amide Complexes. Journal of the American Chemical Society, 2021, 143, 13184-13194.	13.7	5
5	<i>Ab initio</i> molecular dynamics studies of hydroxide coordination of alkaline earth metals and uranyl. Physical Chemistry Chemical Physics, 2019, 21, 13809-13820.	2.8	6
6	Factors affecting the nucleus-independent chemical shift in NMR studies of microporous carbon electrode materials. Energy Storage Materials, 2019, 21, 335-346.	18.0	18
7	Oxygen Vacancy Formation and Water Adsorption on Reduced AnO ₂ {111}, {110}, and {100} Surfaces (An = U, Pu): A Computational Study. Journal of Physical Chemistry C, 2018, 122, 7149-7165.	3.1	45
8	Why Do Some Molecules Form Hydrates or Solvates?. Crystal Growth and Design, 2018, 18, 1903-1908.	3.0	47
9	How to Bend the Uranyl Cation via Crystal Engineering. Inorganic Chemistry, 2018, 57, 2714-2723.	4.0	17
10	Energy-Degeneracy-Driven Covalency in Actinide Bonding. Journal of the American Chemical Society, 2018, 140, 17977-17984.	13.7	108
11	Decomposition of d- and f-Shell Contributions to Uranium Bonding from the Quantum Theory of Atoms in Molecules: Application to Uranium and Uranyl Halides. Inorganics, 2018, 6, 88.	2.7	19
12	Probing hydrogen and halogen-oxo interactions in uranyl coordination polymers: a combined crystallographic and computational study. CrystEngComm, 2018, 20, 4916-4925.	2.6	23
13	Solubility prediction from first principles: a density of states approach. Physical Chemistry Chemical Physics, 2018, 20, 20981-20987.	2.8	26
14	Coordination Chemistry and QTAIM Analysis of Homoleptic Dithiocarbamate Complexes, M(S ₂ CN ⁱ Pr ₂) ₄ (M = Ti, Zr, Hf, Th, U, Np). Inorganic Chemistry, 2018, 57, 10518-10524.	4.0	24
15	Elucidation of the inverse <i>trans</i> influence in uranyl and its imido and carbene analogues <i>via</i> quantum chemical simulation. Chemical Communications, 2018, 54, 9761-9764.	4.1	16
16	Ligand size dependence of U–N and U–O bond character in a series of uranyl hexaphyrin complexes: quantum chemical simulation and density based analysis. Physical Chemistry Chemical Physics, 2017, 19, 7546-7559.	2.8	10
17	The inverse-trans-influence in tetravalent lanthanide and actinide bis(carbene) complexes. Nature Communications, 2017, 8, 14137.	12.8	128
18	Water Adsorption on AnO ₂ {111}, {110}, and {100} Surfaces (An = U and Pu): A Density Functional Theory + <i>U</i> Study. Journal of Physical Chemistry C, 2017, 121, 1675-1682.	3.1	48

ANDREW KERRIDGE

#	Article	IF	CITATIONS
19	Quantification of f-element covalency through analysis of the electron density: insights from simulation. Chemical Communications, 2017, 53, 6685-6695.	4.1	102
20	Double Reduction of 4,4′â€Bipyridine and Reductive Coupling of Pyridine by Two Thorium(III) Singleâ€Electron Transfers. Chemistry - A European Journal, 2017, 23, 2290-2293.	3.3	26
21	Actinide covalency measured by pulsed electron paramagnetic resonance spectroscopy. Nature Chemistry, 2017, 9, 578-583.	13.6	102
22	Unravelling the electronic structure and dynamics of an isolated molecular rotary motor in the gas-phase. Chemical Science, 2017, 8, 6141-6148.	7.4	13
23	Assessing covalency in equatorial U–N bonds: density based measures of bonding in BTP and isoamethyrin complexes of uranyl. Physical Chemistry Chemical Physics, 2016, 18, 16830-16839.	2.8	24
24	Ionic adsorption on the brucite (0001) surface: A periodic electrostatic embedded cluster method study. Journal of Chemical Physics, 2016, 145, 204708.	3.0	7
25	Electronic structure of bulk AnO 2 (AnÂ=ÂU, Np, Pu) and water adsorption on the (111) and (110) surfaces of UO 2 and PuO 2 from hybrid density functional theory within the periodic electrostatic embedded cluster method. Journal of Nuclear Materials, 2016, 482, 124-134.	2.7	30
26	Concomitant Carboxylate and Oxalate Formation From the Activation of CO ₂ by a Thorium(III) Complex. Chemistry - A European Journal, 2016, 22, 17976-17979.	3.3	39
27	Topological Study of Bonding in Aquo and Bis(triazinyl)pyridine Complexes of Trivalent Lanthanides and Actinides: Does Covalency Imply Stability?. Inorganic Chemistry, 2016, 55, 10034-10042.	4.0	41
28	Emergence of comparable covalency in isostructural cerium(<scp>iv</scp>)– and uranium(<scp>iv</scp>)–carbon multiple bonds. Chemical Science, 2016, 7, 3286-3297.	7.4	90
29	Should environmental effects be included when performing QTAIM calculations on actinide systems? A comparison of QTAIM metrics for Cs2UO2Cl4, U(Se2PPh2)4 and Np(Se2PPh2)4 in gas phase, COSMO and PEECM. Polyhedron, 2016, 116, 57-63.	2.2	14
30	U–O _{yl} Stretching Vibrations as a Quantitative Measure of the Equatorial Bond Covalency in Uranyl Complexes: A Quantum-Chemical Investigation. Inorganic Chemistry, 2016, 55, 573-583.	4.0	53
31	White phosphorus activation by a Th(<scp>iii</scp>) complex. Dalton Transactions, 2016, 45, 2390-2393.	3.3	30
32	Assessing Covalency in Cerium and Uranium Hexachlorides: A Correlated Wavefunction and Density Functional Theory Study. Inorganics, 2015, 3, 482-499.	2.7	33
33	The importance of second shell effects in the simulation of hydrated Sr2+ hydroxide complexes. Dalton Transactions, 2015, 44, 11572-11581.	3.3	9
34	Dithio- and Diselenophosphinate Thorium(IV) and Uranium(IV) Complexes: Molecular and Electronic Structures, Spectroscopy, and Transmetalation Reactivity. Inorganic Chemistry, 2015, 54, 11625-11636.	4.0	35
35	Yttrium Complexes of Arsine, Arsenide, and Arsinidene Ligands. Angewandte Chemie - International Edition, 2015, 54, 4255-4258.	13.8	28
36	Neptunyl(<scp>vi</scp>) centred visible LMCT emission directly observable in the presence of uranyl(<scp>vi</scp>). Chemical Communications, 2015, 51, 5402-5405.	4.1	18

ANDREW KERRIDGE

#	Article	IF	CITATIONS
37	Optical excitation of MgO nanoparticles; a computational perspective. Physical Chemistry Chemical Physics, 2014, 16, 22052-22061.	2.8	33
38	f-Orbital covalency in the actinocenes (An = Th–Cm): multiconfigurational studies and topological analysis. RSC Advances, 2014, 4, 12078-12086.	3.6	78
39	Emission spectroscopy of uranium(iv) compounds: a combined synthetic, spectroscopic and computational study. RSC Advances, 2013, 3, 4350.	3.6	57
40	Oxidation state and covalency in f-element metallocenes (M = Ce, Th, Pu): a combined CASSCF and topological study. Dalton Transactions, 2013, 42, 16428.	3.3	90
41	A RASSCF study of free base, magnesium and zinc porphyrins: accuracy versus efficiency. Physical Chemistry Chemical Physics, 2013, 15, 2197.	2.8	17
42	The coordination of Sr2+ by hydroxide: a density functional theoretical study. Dalton Transactions, 2011, 40, 11258.	3.3	8
43	Quantum Chemical Studies of the Hydration of Sr ²⁺ in Vacuum and Aqueous Solution. Chemistry - A European Journal, 2011, 17, 5060-5067.	3.3	17
44	All-electron CASPT2 study of Ce(η8–C8H6)2. Comptes Rendus Chimie, 2010, 13, 853-859.	0.5	23
45	Are the Ground States of the Later Actinocenes Multiconfigurational? All-Electron Spinâ^'Orbit Coupled CASPT2 Calculations on An(η ⁸ -C ₈ H ₈) ₂ (An =) Tj ET(Qq21.51 0.7	84 31 4 rgBT (
46	Is Cerocene Really a Ce(III) Compound? All-Electron Spinâ^'Orbit Coupled CASPT2 Calculations on M(η ⁸ -C ₈ H ₈) ₂ (M = Th, Pa, Ce). Journal of Physical Chemistry A, 2009, 113, 2896-2905.	2.5	72
47	A mystery solved? Photoelectron spectroscopic and quantum chemical studies of the ion states of CeCp3+. Dalton Transactions, 2009, , 5943.	3.3	21
48	Structure-dependent exchange in the organic magnets Cu(II)Pc and Mn(II)Pc. Physical Review B, 2008, 77,	3.2	38
49	Electron dynamics in quantum gate operation. Journal of Physics Condensed Matter, 2007, 19, 282201.	1.8	7
50	Molecular Thin Films: A New Type of Magnetic Switch. Advanced Materials, 2007, 19, 3618-3622.	21.0	133
51	Time dependent quantum simulations of two-qubit gates based on donor states in silicon. Journal of Physics Condensed Matter, 2006, 18, S767-S776.	1.8	5
52	Importance of Quantum Tunneling in Vacancy-Hydrogen Complexes in Diamond. Physical Review Letters, 2005, 95, 105502.	7.8	42
53	Quantum behaviour of hydrogen and muonium in vacancy-containing complexes in diamond. Journal of Physics Condensed Matter, 2004, 16, 8743-8751.	1.8	19