
José Luis RodrÃ-guez-LÃ³pez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3772499/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Pluronic P103 Concentration on the Simple Synthesis of Ag and Au Nanoparticles and Their Application in Anatase-TiO2 Decoration for Its Use in Photocatalysis. Molecules, 2022, 27, 127.	3.8	2
2	Nanostructured complex of reduced graphene oxide adorned with magnetite as an adsorbent for inhibitor compounds in wood hydrolysates. Microporous and Mesoporous Materials, 2021, 310, 110592.	4.4	7
3	Heterojunction of CuO nanoclusters with TiO2 for photo-oxidation of organic compounds and for hydrogen production. Journal of Chemical Physics, 2020, 153, 034705.	3.0	19
4	Reduced graphene oxide decorated with magnetite nanoparticles enhance biomethane enrichment. Journal of Hazardous Materials, 2020, 397, 122760.	12.4	15
5	Multibranched gold nanoparticles coated with serum proteins fit for photothermal tumor ablation. AIP Advances, 2020, 10, .	1.3	1
6	Inhibition of Fungal Growth Using Modified TiO ₂ with Core@Shell Structure of Ag@CuO Clusters. ACS Applied Bio Materials, 2019, 2, 5626-5633.	4.6	21
7	The Decmon: a new nanoparticle shape along the truncation path from the icosahedron to the decahedron. Nanotechnology, 2019, 30, 425701.	2.6	3
8	Atomic Surface Segregation and Structural Characterization of PdPt Bimetallic Nanoparticles. Materials, 2018, 11, 1882.	2.9	39
9	Dynamic Infrared Thermography of Nanoheaters Embedded in Skin-Equivalent Phantoms. Journal of Nanomaterials, 2018, 2018, 1-8.	2.7	2
10	Comparison of two synthesis methods on the preparation of Fe, N-Co-doped TiO2 materials for degradation of pharmaceutical compounds under visible light. Ceramics International, 2017, 43, 5068-5079.	4.8	63
11	Competition between the reaction medium and nanostructured ZnO in the photocatalytic degradation of anthracene. Toward an optimal process for polycyclic aromatic hydrocarbons remediation. Quimica Nova, 2016, , .	0.3	1
12	Response to "Comment on †Electrum, the Gold†Silver Alloy, from the Bulk Scale to the Nanoscale: Synthesis, Properties, and Segregation Rules'― ACS Nano, 2016, 10, 10620-10622.	14.6	5
13	Enhanced Reduction of p-Nitrophenol by a Methanogenic Consortium Promoted by Metallic Nanoparticles. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	6
14	Surface Modification of TiO ₂ with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis. Journal of Physical Chemistry C, 2016, 120, 5143-5154.	3.1	241
15	Luminescence Concentration Quenching Mechanism in Gd ₂ O ₃ :Eu ³⁺ Journal of Physical Chemistry A, 2014, 118, 1390-1396.	2.5	99
16	Luminescence and energy transfer properties of Eu3+ and Gd3+ in ZrO2. Journal of Luminescence, 2014, 146, 398-403.	3.1	33
17	Coronary lesions quantification with dual-axis rotational coronary angiography. Cardiovascular Revascularization Medicine, 2013, 14, 37-40.	0.8	4
18	<i>In situ</i> TEM study of mechanical behaviour of twinned nanoparticles. Philosophical Magazine, 2012, 92, 4437-4453.	1.6	24

#	Article	IF	CITATIONS
19	ComparaciÃ ³ n de angiografÃa coronaria rotacional de doble eje (XPERSWING) frente a técnica convencional en la práctica habitual. Revista Espanola De Cardiologia, 2012, 65, 434-439.	1.2	16
20	TCT-319 Improvement of coronary lesions quantification with rotational angiography "XperSwing― Journal of the American College of Cardiology, 2012, 60, B90.	2.8	0
21	TCT-320 Rotational angiography with "Xperswing―technique: comparative analysis of radiation dose compared to conventional angiography. Journal of the American College of Cardiology, 2012, 60, B90.	2.8	2
22	TCT-321 Rotational angiography with Xperswing: safety and accuracy compared to conventional angiography. Journal of the American College of Cardiology, 2012, 60, B91.	2.8	0
23	Nucleation and Growth of Stellated Gold Clusters: Experimental Synthesis and Theoretical Study. Journal of Physical Chemistry C, 2010, 114, 21051-21060.	3.1	16
24	Generalizing segregation and chemical ordering in bimetallic nanoclusters through atomistic view points. Physical Review B, 2009, 80, .	3.2	32
25	A Variable-Number Genetic Algorithm for Growth of 1-Dimensional Nanostructures into Their Global Minimum Configuration Under Radial Confinement. Materials and Manufacturing Processes, 2009, 24, 265-273.	4.7	9
26	Enhanced tunneling through nonstationary barriers. Physical Review A, 2007, 76, .	2.5	9
27	Assessment of isobaric-isothermal (NPT) simulations for finite systems. Computational Materials Science, 2006, 37, 526-536.	3.0	17
28	The Completion of the Platonic Atomic Polyhedra: The Dodecahedron. Small, 2006, 2, 351-355.	10.0	22
29	Finite single wall capped carbon nanotubes under hydrostatic pressure. Journal of Physics Condensed Matter, 2006, 18, 9119-9128.	1.8	10
30	LOW DIMENSIONAL NON-CRYSTALLOGRAPHIC METALLIC NANOSTRUCTURES: HRTEM SIMULATION, MODELS AND EXPERIMENTAL RESULTS. Modern Physics Letters B, 2006, 20, 725-751.	1.9	15
31	Surface Reconstruction and Decahedral Structure of Bimetallic Nanoparticles. Physical Review Letters, 2004, 92, 196102.	7.8	88
32	Magnetism in small rhodium clusters under structural deformations. Journal of Alloys and Compounds, 2004, 369, 81-83.	5.5	1
33	Magnetic structure of cobalt clusters. Journal of Alloys and Compounds, 2004, 369, 93-96.	5.5	11
34	Effects of the structural deformations on the magnetism of Rh6 and Rh13 clusters. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 318, 473-479.	2.1	4
35	Molecular dynamics study of bimetallic nanoparticles: the case of AuxCuy alloy clusters. Applied Surface Science, 2003, 219, 56-63.	6.1	56
36	Structure and magnetism of cobalt clusters. Physical Review B, 2003, 67, .	3.2	128

#	Article	IF	CITATIONS
37	Magnetic interactions between small Ni clusters. Solid State Communications, 2000, 116, 309-314.	1.9	0
38	Magnetic moments of. European Physical Journal D, 1999, 6, 235.	1.3	15
39	Orbital magnetism at the surfaces of3dtransition metals. Physical Review B, 1998, 57, 1040-1045.	3.2	35
40	Size Effect and Shape Stability of Nanoparticles. Key Engineering Materials, 0, 444, 47-68.	0.4	9