
Abdeslam Chagraoui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3772159/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-Term Heart Rate Reduction Induced by the Selective <i>I</i> _f Current Inhibitor Ivabradine Improves Left Ventricular Function and Intrinsic Myocardial Structure in Congestive Heart Failure. Circulation, 2004, 109, 1674-1679.	1.6	281
2	Tissue Doppler Imaging Differentiates Physiological From Pathological Pressure-Overload Left Ventricular Hypertrophy in Rats. Circulation, 2002, 105, 1602-1608.	1.6	137
3	High-affinity [3H]GBR 12783 binding to a specific site associated with the neuronal dopamine uptake complex in the central nervous system. European Journal of Pharmacology, 1986, 126, 211-222.	3.5	108
4	Selenoprotein T Exerts an Essential Oxidoreductase Activity That Protects Dopaminergic Neurons in Mouse Models of Parkinson's Disease. Antioxidants and Redox Signaling, 2016, 24, 557-574.	5.4	91
5	New investigations within the TeO2-WO3 system: phase equilibrium diagram and glass crystallization. Journal of Materials Science, 1999, 34, 4285-4292.	3.7	90
6	5-HT2C receptors in psychiatric disorders: A review. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 66, 120-135.	4.8	87
7	L-DOPA in Parkinson's Disease: Looking at the "False―Neurotransmitters and Their Meaning. International Journal of Molecular Sciences, 2020, 21, 294.	4.1	60
8	Agomelatine(S 20098) antagonizes the penile erections induced by the stimulation of 5-HT 2C receptors in Wistar rats. Psychopharmacology, 2003, 170, 17-22.	3.1	53
9	The PACAP-Regulated Gene Selenoprotein T Is Highly Induced in Nervous, Endocrine, and Metabolic Tissues during Ontogenetic and Regenerative Processes. Endocrinology, 2011, 152, 4322-4335.	2.8	50
10	Climbing and stereotyped behaviours in mice require the stimulation of D-1 dopamine receptors. European Journal of Pharmacology, 1988, 148, 221-229.	3.5	47
11	Enantioselective Syntheses of Dopaminergic (R)- and (S)-Benzyltetrahydroisoquinolines. Journal of Medicinal Chemistry, 2001, 44, 1794-1801.	6.4	44
12	Constitutive activity of 5-HT receptors: Factual analysis. Neuropharmacology, 2020, 168, 107967.	4.1	41
13	Dopamine receptor antagonist properties of S 14506, 8-OH-DPAT, raclopride and clozapine in rodents. European Journal of Pharmacology, 1994, 271, 167-177.	3.5	36
14	Structure–affinity relationships of halogenated predicentrine and glaucine derivatives at D1 and D2 dopaminergic receptors: halogenation and D1 receptor selectivity. Bioorganic and Medicinal Chemistry, 2005, 13, 3699-3704.	3.0	34
15	WFSBP and IAWMH Guidelines for the treatment of alcohol use disorders in pregnant women. World Journal of Biological Psychiatry, 2019, 20, 17-50.	2.6	31
16	In vivo binding of [3H]GBR 12783, a selective dopamine uptake inhibitor, in mouse striatum. Neuroscience Letters, 1987, 78, 175-179.	2.1	30
17	Interactions of amineptine with the neuronal dopamine uptake system: Neurochemicalin vitro andin vivo studies. Journal of Neural Transmission, 1987, 69, 211-220.	2.8	28
18	Lorcaserin bidirectionally regulates dopaminergic function site-dependently and disrupts dopamine brain area correlations in rats. Neuropharmacology, 2020, 166, 107915.	4.1	24

Abdeslam Chagraoui

#	Article	IF	CITATIONS
19	Neurochemical impact of the 5-HT2C receptor agonist WAY-163909 on monoamine tissue content in the rat brain. Neurochemistry International, 2019, 124, 245-255.	3.8	21
20	Serotonin modulation of hippocampal functions: From anatomy to neurotherapeutics. Progress in Brain Research, 2021, 261, 83-158.	1.4	20
21	Cell-penetrating, antioxidant SELENOT mimetic protects dopaminergic neurons and ameliorates motor dysfunction in Parkinson's disease animal models. Redox Biology, 2021, 40, 101839.	9.0	20
22	Preparation of dopaminergic N -alkyl-benzyltetrahydro-isoquinolines using a â€~one-pot' procedure in acid medium. Bioorganic and Medicinal Chemistry, 2000, 8, 889-895.	3.0	19
23	Early neurochemical modifications of monoaminergic systems in the R6/1 mouse model of Huntington's disease. Neurochemistry International, 2019, 128, 186-195.	3.8	19
24	Effects of some antioxidative aporphine derivatives on striatal dopaminergic transmission and on MPTP-induced striatal dopamine depletion in B6CBA mice. European Journal of Pharmaceutical Sciences, 2003, 18, 133-140.	4.0	17
25	Effects of chronic treatments with amineptine and despiramine on motor responses involving dopaminergic systems. Psychopharmacology, 1990, 102, 201-206.	3.1	15
26	Syntheses of dopaminergic 1-cyclohexylmethyl-7,8-dioxygenated tetrahydroisoquinolines by selective heterogeneous tandem hydrogenation. Tetrahedron, 2002, 58, 10173-10179.	1.9	14
27	Effect of the 5-HT2C Receptor Agonist WAY-163909 on Serotonin and Dopamine Metabolism across the Rat Brain: A Quantitative and Qualitative Neurochemical Study. International Journal of Molecular Sciences, 2019, 20, 2925.	4.1	12
28	Chronic Administration of Fipronil Heterogeneously Alters the Neurochemistry of Monoaminergic Systems in the Rat Brain. International Journal of Molecular Sciences, 2020, 21, 5711.	4.1	12
29	The rise of body temperature induced by the stimulation of dopamine D1 receptors is increased in acutely reserpinized mice. European Journal of Pharmacology, 1990, 181, 23-33.	3.5	11
30	Serotonin/dopamine interaction: Electrophysiological and neurochemical evidence. Progress in Brain Research, 2021, 261, 161-264.	1.4	11
31	To what extent is it possible to dissociate the anxiolytic and sedative/hypnotic properties of GABAA receptors modulators?. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 71, 189-202.	4.8	10
32	The pathophysiological mechanisms of motivational deficits in Parkinson's disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 81, 138-152.	4.8	10
33	Epigenetics and Attention-Deficit/Hyperactivity Disorder: New Perspectives?. Frontiers in Psychiatry, 2020, 11, 579.	2.6	10
34	Lorcaserin Alters Serotonin and Noradrenaline Tissue Content and Their Interaction With Dopamine in the Rat Brain. Frontiers in Pharmacology, 2020, 11, 962.	3.5	9
35	Coronaridine congeners potentiate GABAA receptors and induce sedative activity in mice in a benzodiazepine-insensitive manner. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 101, 109930.	4.8	7
36	Reciprocal interaction between monoaminergic systems and the pedunculopontine nucleus: Implication in the mechanism of L-DOPA. Neurobiology of Disease, 2019, 128, 9-18.	4.4	6

#	Article	IF	CITATIONS
37	A Subset of Purposeless Oral Movements Triggered by Dopaminergic Agonists Is Modulated by 5-HT2C Receptors in Rats: Implication of the Subthalamic Nucleus. International Journal of Molecular Sciences, 2020, 21, 8509.	4.1	5
38	Interaction of Amineptine with Agents Modifying Dopaminergic Transmission. Clinical Neuropharmacology, 1989, 12, S19-S31.	0.7	4
39	Editorial: Contemporary Perspective on 5-HT2C Receptor Function and Its Pharmacological Targeting. Frontiers in Pharmacology, 2020, 11, 606414.	3.5	4
40	Neurobiological and Pharmacological Perspectives of D3 Receptors in Parkinson's Disease. Biomolecules, 2022, 12, 243.	4.0	4
41	Fortuitous detection of a case of unknown haemoglobin Athens-Georgia from atypical HbA1c electropherogram. Clinica Chimica Acta, 2015, 440, 6-7.	1.1	3
42	Serotonergic control of excitability: from neuron to networks. Handbook of Behavioral Neuroscience, 2020, 31, 197-215.	0.7	3
43	Selenoprotein T: From Discovery to Functional Studies Using Conditional Knockout Mice. , 2016, , 275-286.		3
44	Cannabinoid 1/2 Receptor Activation Induces Strain-Dependent Behavioral and Neurochemical Changes in Genetic Absence Epilepsy Rats From Strasbourg and Non-epileptic Control Rats. Frontiers in Cellular Neuroscience, 2022, 16, .	3.7	3
45	Haemoglobin J-Baltimore can be detected by HbA1c electropherogram but with underestimated HbA1c value. Biochemia Medica, 2016, 26, 240-242.	2.7	2
46	Dipotassium ethylenediaminetetraacetic acid is better than tripotassium salt for electrochemiluminescence insulin measurement. Clinica Chimica Acta, 2016, 463, 45-46.	1.1	1
47	La pharmacie orthopédique en milieu hospitalierÂ: une autre pratique de la pharmacie clinique. Pharmacien Hospitalier Et Clinicien, 2017, 52, 293-298.	0.3	0
48	Dopamine D3 Receptor: Contemporary Views of Its Function and Pharmacology for Neuropsychiatric Diseases. Biomolecules, 2021, 11, 713.	4.0	0
49	Motivation and motivational aspects of Parkinson's disease. , 2020, , 497-509.		0