Lei Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3772027/publications.pdf

Version: 2024-02-01

		101543	95266
107	5,140	36	68
papers	citations	h-index	g-index
107	107	107	3717
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Uncommon Pyrazoyl-Carboxyl Bifunctional Ligand-Based Microporous Lanthanide Systems: Sorption and Luminescent Sensing Properties. Inorganic Chemistry, 2016, 55, 3952-3959.	4.0	276
2	Four uncommon nanocage-based Ln-MOFs: highly selective luminescent sensing for Cu ²⁺ ions and selective CO ₂ capture. Chemical Communications, 2014, 50, 8731.	4.1	245
3	Porous Metalâ^'Organic Framework Based on μ ₄ -oxo Tetrazinc Clusters: Sorption and Guest-Dependent Luminescent Properties. Inorganic Chemistry, 2008, 47, 1346-1351.	4.0	185
4	Porous MOF with Highly Efficient Selectivity and Chemical Conversion for CO ₂ . ACS Applied Materials & Interfaces, 2017, 9, 17969-17976.	8.0	173
5	Molecular braids in metal–organic frameworks. Chemical Society Reviews, 2012, 41, 6992.	38.1	166
6	A robust cluster-based Eu-MOF as multi-functional fluorescence sensor for detection of antibiotics and pesticides in water. Sensors and Actuators B: Chemical, 2021, 331, 129377.	7.8	155
7	A rod packing microporous metal–organic framework: unprecedented <i>ukv</i> topology, high sorption selectivity and affinity for CO ₂ . Chemical Communications, 2011, 47, 5464-5466.	4.1	152
8	Supramolecular control of MOF pore properties for the tailored guest adsorption/separation applications. Coordination Chemistry Reviews, 2021, 434, 213709.	18.8	141
9	Honeycomb Metal–Organic Framework with Lewis Acidic and Basic Bifunctional Sites: Selective Adsorption and CO ₂ Catalytic Fixation. ACS Applied Materials & Therfaces, 2018, 10, 10965-10973.	8.0	138
10	Two Unusual Nanocageâ€Based Lnâ€MOFs with Triazole Sites: Highly Fluorescent Sensing for Fe ³⁺ and Cr ₂ O ₇ ^{2â^'} , and Selective CO ₂ Capture. ChemPlusChem, 2016, 81, 1299-1304.	2.8	133
11	Investigation on the prime factors influencing the formation of entangled metal–organic frameworks. CrystEngComm, 2013, 15, 2561.	2.6	131
12	Efficient light hydrocarbon separation and CO ₂ capture and conversion in a stable MOF with oxalamide-decorated polar tubes. Chemical Communications, 2017, 53, 12970-12973.	4.1	121
13	An octacobalt cluster based, (3,12)-connected, magnetic, porous coordination polymer. Chemical Communications, 2010, 46, 6311.	4.1	116
14	An Uncommon Carboxylâ€Decorated Metal–Organic Framework with Selective Gas Adsorption and Catalytic Conversion of CO ₂ . Chemistry - A European Journal, 2018, 24, 865-871.	3.3	112
15	Thiol-Functionalized Pores via Post-Synthesis Modification in a Metal–Organic Framework with Selective Removal of Hg(II) in Water. Inorganic Chemistry, 2019, 58, 3409-3415.	4.0	109
16	Novel cage-like MOF for gas separation, CO ₂ conversion and selective adsorption of an organic dye. Inorganic Chemistry Frontiers, 2020, 7, 746-755.	6.0	99
17	Four new metal–organic frameworks based on diverse secondary building units: sensing and magnetic properties. Dalton Transactions, 2018, 47, 1682-1692.	3.3	98
18	Two highly-connected, chiral, porous coordination polymers featuring novel heptanuclear metal carboxylate clusters. Chemical Communications, 2008, , 4019.	4.1	90

#	Article	IF	CITATIONS
19	Luminescence Modulation, White Light Emission, and Energy Transfer in a Family of Lanthanide Metal–Organic Frameworks Based on a Planar l€-Conjugated Ligand. Crystal Growth and Design, 2017, 17, 4217-4224.	3.0	82
20	Exploring the hydrogen-bond structures in sodium alginate through two-dimensional correlation infrared spectroscopy. Carbohydrate Polymers, 2019, 205, 420-426.	10.2	82
21	A Cationic MOF with High Uptake and Selectivity for CO ₂ due to Multiple CO ₂ â€Philic Sites. Chemistry - A European Journal, 2015, 21, 16525-16531.	3.3	72
22	A New Porous MOF with Two Uncommon Metal–Carboxylate–Pyrazolate Clusters and High CO ₂ /N ₂ Selectivity. Inorganic Chemistry, 2015, 54, 1841-1846.	4.0	71
23	Structural diversity of five new bitriazole-based complexes: luminescence, sorption, and magnetic properties. Dalton Transactions, 2015, 44, 1110-1119.	3.3	69
24	Multiple Functions of Gas Separation and Vapor Adsorption in a New MOF with Open Tubular Channels. ACS Applied Materials & Description of Channels. ACS Applied Materials & Description of Channels.	8.0	67
25	A new stable luminescent Cd(<scp>ii</scp>) metal–organic framework with fluorescent sensing and selective dye adsorption properties. Dalton Transactions, 2018, 47, 9466-9473.	3.3	65
26	Highly selective luminescence sensing for Cu ²⁺ ions and selective CO ₂ capture in a doubly interpenetrated MOF with Lewis basic pyridyl sites. Dalton Transactions, 2015, 44, 4423-4427.	3.3	64
27	Efficient C ₂ H <i>_n</i> Hydrocarbons and VOC Adsorption and Separation in an MOF with Lewis Basic and Acidic Decorated Active Sites. ACS Applied Materials & Decorated Active Sites. ACS Active Sites & Decorated Active Sites & Decor	8.0	64
28	Three new solvent-directed 3D lead(ii)–MOFs displaying the unique properties of luminescence and selective CO2 sorption. Dalton Transactions, 2013, 42, 13590.	3.3	57
29	Tunable Emission and Selective Luminescence Sensing in a Series of Lanthanide Metal–Organic Frameworks with Uncoordinated Lewis Basic Triazolyl Sites. Crystal Growth and Design, 2018, 18, 2031-2039.	3.0	57
30	Oneâ€Step C ₂ H ₄ Purification from Ternary C ₂ H ₆ /C ₂ H _{>6} /C _{>6} /C _{>6} /C _{>6} /C _{/C_/}}	13.8	57
31	Stable Indium-Pyridylcarboxylate Framework: Selective Gas Capture and Sensing of Fe ³⁺ lon in Water. Inorganic Chemistry, 2018, 57, 15262-15269.	4.0	53
32	Nonenzymatic Glucose Sensing and Magnetic Property Based On the Composite Formed by Encapsulating Ag Nanoparticles in Cluster-Based Co-MOF. Inorganic Chemistry, 2019, 58, 16743-16751.	4.0	51
33	Rational construction of a stable Zn ₄ O-based MOF for highly efficient CO ₂ capture and conversion. Chemical Communications, 2018, 54, 456-459.	4.1	48
34	Structural Diversity of Cadmium(II) Coordination Polymers Induced by Tuning the Coordination Sites of Isomeric Ligands. Inorganic Chemistry, 2016, 55, 8871-8880.	4.0	43
35	Post-Synthetic Functionalization of Ni-MOF by Eu ³⁺ lons: Luminescent Probe for Aspartic Acid and Magnetic Property. Inorganic Chemistry, 2020, 59, 7531-7538.	4.0	43
36	A highly stable MOF with F and N accessible sites for efficient capture and separation of acetylene from ternary mixtures. Journal of Materials Chemistry A, 2021, 9, 24495-24502.	10.3	40

#	Article	IF	CITATIONS
37	A new honeycomb metal–carboxylate-tetrazolate framework with multiple functions for CO ₂ conversion and selective capture of C ₂ H ₂ , CO ₂ and benzene. Inorganic Chemistry Frontiers, 2020, 7, 1957-1964.	6.0	39
38	A Multi-Functional In(III)-Organic Framework for Acetylene Separation, Carbon Dioxide Utilization, and Antibiotic Detection in Water. Inorganic Chemistry, 2020, 59, 15302-15311.	4.0	38
39	Four New 3D Metal–Organic Frameworks Constructed by a V-shaped Tetracarboxylates Ligand: Selective CO ₂ Sorption and Luminescent Sensing. Crystal Growth and Design, 2017, 17, 6733-6740.	3.0	37
40	Five New Cd(II) Complexes Induced by Reaction Conditions and Coordination Modes of 5-(1 <i>H</i> -Tetrazol-5-yl)isophthalic Acid Ligand: Structures and Luminescence. Crystal Growth and Design, 2016, 16, 5394-5402.	3.0	36
41	Efficient gas and alcohol uptake and separation driven by two types of channels in a porous MOF: an experimental and theoretical investigation. Journal of Materials Chemistry A, 2020, 8, 5227-5233.	10.3	36
42	Syntheses of three new isostructural lanthanide coordination polymers with tunable emission colours through bimetallic doping, and their luminescence sensing properties. Dalton Transactions, 2019, 48, 13607-13613.	3.3	35
43	Two new pH-controlled metal–organic frameworks based on polynuclear secondary building units with conformation-flexible cyclohexane-1,2,4,5-tetracarboxylate ligand. Inorganica Chimica Acta, 2011, 367, 127-134.	2.4	34
44	Two Nanocage-Based Metal–Organic Frameworks with Mixed-Cluster SBUs and CO2 Sorption Selectivity. Inorganic Chemistry, 2015, 54, 8937-8942.	4.0	34
45	Three new energetic complexes with N,N-bis(1H-tetrazole-5-yl)-amine as high energy density materials: syntheses, structures, characterization and effects on the thermal decomposition of RDX. Dalton Transactions, 2017, 46, 2626-2634.	3.3	34
46	Direct Evidence: Enhanced C ₂ H ₆ and C ₂ H ₄ Adsorption and Separation Performances by Introducing Open Nitrogen-Donor Sites in a MOF. Inorganic Chemistry, 2018, 57, 12417-12423.	4.0	34
47	Performance enhancement of oxygen evolution reaction through incorporating bimetallic electrocatalysts in two-dimensional metal–organic frameworks. Catalysis Science and Technology, 2020, 10, 3897-3903.	4.1	34
48	Functionalization of MOFs <i>via</i> a mixed-ligand strategy: enhanced CO ₂ uptake by pore surface modification. Dalton Transactions, 2018, 47, 5298-5303.	3.3	33
49	Five transition metal coordination polymers driven by a semirigid trifunctional nicotinic acid ligand: selective adsorption and magnetic properties. CrystEngComm, 2018, 20, 5726-5734.	2.6	33
50	Two Robust In(III)-Based Metal–Organic Frameworks with Higher Gas Separation, Efficient Carbon Dioxide Conversion, and Rapid Detection of Antibiotics. Inorganic Chemistry, 2020, 59, 5231-5239.	4.0	31
51	A polar tetrazolyl-carboxyl microporous Zn(ii)–MOF: sorption and luminescent properties. Dalton Transactions, 2013, 42, 3653.	3.3	29
52	Four new 3D metal–organic frameworks constructed by the asymmetrical pentacarboxylate: gas sorption behaviour and magnetic properties. Dalton Transactions, 2016, 45, 15473-15480.	3.3	29
53	Effective C ₂ H ₂ Separation and Nitrofurazone Detection in a Stable Indium–Organic Framework. Inorganic Chemistry, 2020, 59, 2853-2860.	4.0	29
54	Fluorine-Substituted Regulation in Two Comparable Isostructural Cd(II) Coordination Polymers: Enhanced Fluorescence Detection for Tetracyclines in Water. Crystal Growth and Design, 2021, 21, 2488-2497.	3.0	29

#	Article	IF	CITATIONS
55	Amide-Functionalized In-MOF for Effective Hydrocarbon Separation and CO ₂ Catalytic Fixation. Inorganic Chemistry, 2022, 61, 2679-2685.	4.0	29
56	A chiral metal–organic framework with polar channels: unique interweaving six-fold helices and high CO ₂ /CH ₄ separation. Inorganic Chemistry Frontiers, 2016, 3, 1326-1331.	6.0	28
57	A Dy ₆ -cluster-based <i>fcu</i> -MOF with efficient separation of C ₂ H ₄ and selective adsorption of benzene. Inorganic Chemistry Frontiers, 2021, 8, 376-382.	6.0	28
58	A Two-Coordinate Neutral Germylene Supported by a \hat{l}^2 -Diketiminate Ligand in the Radical State. Organometallics, 2017, 36, 2706-2709.	2.3	27
59	Selective CO ₂ adsorption in a microporous metal–organic framework with suitable pore sizes and open metal sites. Inorganic Chemistry Frontiers, 2015, 2, 550-557.	6.0	26
60	Acetylene Separation by a Ca-MOF Containing Accessible Sites of Open Metal Centers and Organic Groups. ACS Applied Materials & Samp; Interfaces, 2021, 13, 58862-58870.	8.0	26
61	Two New (3,6)-Connected Frameworks Based on an Unsymmetrical Tritopic Pyridyldicarboxylate Ligand and Co ₂ Dimer: Structures, Magnetic, and Sorption Properties. Crystal Growth and Design, 2013, 13, 701-707.	3.0	25
62	New porous coordination polymers based on expanded pyridyl-dicarboxylate ligands and a paddle-wheel cluster. CrystEngComm, 2014, 16, 6325-6330.	2.6	25
63	An Interpenetrated Pillar-Layered Metal-Organic Framework with Novel Clusters: Reversible Structural Transformation and Selective Gate-Opening Adsorption. Crystal Growth and Design, 2018, 18, 3044-3050.	3.0	25
64	Design of Antiâ€UV Radiation Textiles with Selfâ€Assembled Metal–Organic Framework Coating. Advanced Materials Interfaces, 2020, 7, 1901525.	3.7	25
65	Dynamic porous coordination polymer based on 2D stacked layers exhibiting high sorption selectivity for CO2. Dalton Transactions, 2012, 41, 3209.	3.3	24
66	Construction of Highly Porous Pillared Metal–Organic Frameworks: Rational Synthesis, Structure, and Gas Sorption Properties. Inorganic Chemistry, 2017, 56, 9147-9155.	4.0	23
67	Four alkaline earth metal (Mg, Ca, Sr, Ba)-based MOFs as multiresponsive fluorescent sensors for Fe3+, Pb2+ and Cu2+ ions in aqueous solution. Journal of Solid State Chemistry, 2019, 277, 636-647.	2.9	23
68	Exploring the diffusion behavior of urea aqueous solution in the viscose film by ATR-FTIR spectroscopy. Cellulose, 2020, 27, 2403-2415.	4.9	23
69	Efficient Gas and VOC Separation and Pesticide Detection in a Highly Stable Interpenetrated Indium–Organic Framework. Inorganic Chemistry, 2021, 60, 10698-10706.	4.0	23
70	Ligand Configuration-Induced Manganese(II) Coordination Polymers: Syntheses, Crystal Structures, Sorption, and Magnetic Properties. Inorganic Chemistry, 2017, 56, 10090-10098.	4.0	22
71	Two-dimensional correlation infrared spectroscopy of heat-induced esterification of cellulose with 1,2,3,4-butanetetracarboxylic acid in the presence of sodium hypophosphite. Cellulose, 2019, 26, 2759-2769.	4.9	22
72	Effect of overexpression of transcription factors on the fermentation properties of Saccharomyces cerevisiae industrial strains. Letters in Applied Microbiology, 2009, 49, 14-19.	2.2	21

#	Article	IF	CITATIONS
73	A new layer-stacked porous framework showing sorption selectivity for CO ₂ and luminescence. Dalton Transactions, 2017, 46, 11722-11727.	3.3	20
74	Two metal–organic frameworks based on a flexible benzimidazole carboxylic acid ligand: selective gas sorption and luminescence. Dalton Transactions, 2017, 46, 15118-15123.	3.3	19
75	A robust ethane-selective metal-organic framework with nonpolar pore surface for efficient C2H6/C2H4 separation. Chemical Engineering Journal, 2022, 433, 133786.	12.7	19
76	New Sesquiterpenoids and a Diterpenoid from Alpinia oxyphylla. Molecules, 2015, 20, 1551-1559.	3.8	18
77	Three New MOFs Induced by Organic Linker Coordination Modes: Gas Sorption, Luminescence, and Magnetic Properties. Chemistry - an Asian Journal, 2019, 14, 2988-2994.	3.3	18
78	Three Lanthanide Metalâ€Organic Frameworks Based on an Etherâ€Decorated Polycarboxylic Acid Linker: Luminescence Modulation, CO ₂ Capture and Conversion Properties. Chemistry - an Asian Journal, 2020, 15, 191-197.	3.3	18
79	Five new 3D transition MOFs based on 1-(3,5-dicarboxylatobenzyl)-3,5-pyrazole dicarboxylic acid displaying unique luminescence sensing towards Fe ³⁺ and magnetic properties. Dalton Transactions, 2019, 48, 7786-7793.	3.3	17
80	C ₂ H ₂ capture and separation in a MOF based on Ni ₆ trigonal-prismatic units. Chemical Communications, 2022, 58, 6208-6211.	4.1	17
81	A stable Cd(II)-based MOF with efficient CO2 capture and conversion, and fluorescence sensing for ronidazole and dimetridazole. Journal of Solid State Chemistry, 2021, 295, 121890.	2.9	16
82	Efficient One-Step Purification of C ₁ and C ₂ Hydrocarbons over CO ₂ in a New CO ₂ -Selective MOF with a Gate-Opening Effect. ACS Applied Materials & Description of Communication (Section 2018) amp; Interfaces, 2022, 14, 26858-26865.	8.0	16
83	Two Comparable Isostructural Microporous Metal-Organic Frameworks: Better Luminescent Sensor and Higher Adsorption Selectivity for the Fluorine-Decorated Framework. European Journal of Inorganic Chemistry, 2015, 2015, 5773-5780.	2.0	15
84	Oneâ€Step C ₂ H ₄ Purification from Ternary C ₂ H ₆ /C ₂ H ₄ /C ₂ H ₄ /C ₂ H ₂ H ₄ /C ₂ H ₄ /C ₂ H ₄ /C ₂ H ₄ /C ₂ /C ₂ /C ₂ /C _{134,}	2.0	15
85	Peculiar phenomena of structural transformations triggered from a nickel coordination polymer. CrystEngComm, 2015, 17, 1839-1847.	2.6	14
86	New Supercage Metal–Organic Framework Based on Allopurinol Ligands Showing Acetylene Storage and Separation. Chemistry - A European Journal, 2020, 26, 16402-16407.	3.3	14
87	Luminescent and Magnetic Properties of Coordination Polymers Induced by Coordinating Modes of a Bis(oxamate) Ligand. ChemPlusChem, 2019, 84, 62-68.	2.8	13
88	Ge ^I –Ge ^I Coupling Reaction Induced by a Mixture of CoBr ₂ and a Seven-Membered N-Heterocyclic Carbene. Inorganic Chemistry, 2018, 57, 2969-2972.	4.0	12
89	New scu topological MOF based on azolyl-carboxyl bifunctional linker: Gas adsorption and luminescence properties. Journal of Solid State Chemistry, 2020, 283, 121170.	2.9	11
90	Three new super water-stable lanthanide–organic frameworks for luminescence sensing and magnetic properties. New Journal of Chemistry, 2018, 42, 9221-9227.	2.8	10

#	Article	IF	CITATIONS
91	A new metal–organic framework based on rare [Zn ₄ F ₄] cores for efficient separation of C ₂ H ₂ . Chemical Communications, 2021, 57, 12788-12791.	4.1	10
92	Indium metal–organic frameworks based on pyridylcarboxylate ligands and their potential applications. Dalton Transactions, 2021, 50, 5713-5723.	3.3	9
93	Two new MOFs based on 5-((4-carboxypyridin-2-yl)oxy) isophthalic acid displaying unique selective CO ₂ gas adsorption and magnetic properties. CrystEngComm, 2019, 21, 7078-7084.	2.6	8
94	Two alkaline earth metal coordination polymers based on a new oxamate-dicarboxylate ligand: Selective fluorescence sensing of Fe3+ in aqueous solution. Inorganic Chemistry Communication, 2019, 107, 107490.	3.9	7
95	Five new coordination polymers of s- and d-block metals: Structural diversities, magnetic properties and luminescence. Journal of Solid State Chemistry, 2019, 270, 516-523.	2.9	7
96	A Pb ²⁺ -based coordination polymer with 5-(1H-tetrazol-5-yl)isophthalic acid ligand: structure and photoluminescence. Journal of Coordination Chemistry, 2016, 69, 2573-2579.	2.2	6
97	Structural Diversity of Three Pyrazoyl–Carboxyl Bifunctional Ligandâ€Based Metal–Organic Frameworks: Luminescence and Magnetic Properties. ChemPlusChem, 2017, 82, 376-382.	2.8	6
98	An Anionic βâ€Diketiminato Oxoborane with a B–O Double Bond. European Journal of Inorganic Chemistry, 2019, 2019, 2635-2638.	2.0	6
99	Accumulation of phytoene and astaxanthin and related genes expression in Haematococcus pluvialis under sodium acetate stress. Aquatic Biology, 2020, 29, 155-164.	1.4	6
100	A Lead Carboxylateâ€Azolate Metalâ€Organic Framework Based on Hexanuclear Clusters: Luminescence and Accelerating the Thermal Decomposition of Ammonium Perchlorate. ChemPlusChem, 2019, 84, 289-294.	2.8	5
101	Two new coordination polymers based on a pyridine-pyrazole bifunctional linker: Synthesis, structure and luminescent properties. Inorganic Chemistry Communication, 2018, 96, 128-132.	3.9	4
102	Anionic oxoborane and thioxoborane molecules supported by a 1,2-bis(imino)acenaphthene ligand. Dalton Transactions, 2021, 50, 6797-6801.	3.3	3
103	A microporous anionic metal–organic framework for aqueous encapsulation and highly reversible sensitization of light-emitting Tb ³⁺ ions. New Journal of Chemistry, 2022, 46, 5201-5205.	2.8	3
104	Two Cu-based cluster coordination polymers constructed from two thioether tripod tricarboxylic acid ligands: Synthesis, crystal structure and fluorescence sensing. Inorganic Chemistry Communication, 2020, 113, 107805.	3.9	2
105	Systematic and efficient synthesis of \hat{l}^2 -diketiminato aluminum halides and their structural characterization. Tetrahedron Letters, 2021, 68, 152942.	1.4	2
106	Automatical encoding of button products based on visual recognition., 2017,,.		0
107	An \hat{l}_{\pm} -diiminato germylene family: syntheses, structures, and reactivity towards C-C coupled digermylene and digermylene oxide. Dalton Transactions, 2022, , .	3.3	0