Changyu Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3772000/publications.pdf

Version: 2024-02-01

			430874	361022
	34	1,606	18	35
	papers	citations	h-index	g-index
ı				
		0.7	0-	0.445
	3/	3/	3/	2445
	all docs	docs citations	times ranked	citing authors
	37 all docs	37 docs citations	37 times ranked	2445 citing authors

#	Article	IF	CITATIONS
1	High Ion Conducting Polymer Nanocomposite Electrolytes Using Hybrid Nanofillers. Nano Letters, 2012, 12, 1152-1156.	9.1	273
2	3D printing of a mechanically durable superhydrophobic porous membrane for oil–water separation. Journal of Materials Chemistry A, 2017, 5, 12435-12444.	10.3	189
3	Largely Improved Tensile Properties of Chitosan Film via Unique Synergistic Reinforcing Effect of Carbon Nanotube and Clay. Journal of Physical Chemistry B, 2008, 112, 3876-3881.	2.6	141
4	Superhydrophobic and Recyclable Cellulose-Fiber-Based Composites for High-Efficiency Passive Radiative Cooling. ACS Applied Materials & Samp; Interfaces, 2021, 13, 22521-22530.	8.0	98
5	Hierarchical SnO2–Sn3O4 heterostructural gas sensor with high sensitivity and selectivity to NO2. Sensors and Actuators B: Chemical, 2019, 301, 127010.	7.8	82
6	A robust and flexible bulk superhydrophobic material from silicone rubber/silica gel prepared by thiol–ene photopolymerization. Journal of Materials Chemistry A, 2019, 7, 7242-7255.	10.3	78
7	Enhanced wetting properties of a polypropylene separator for a lithium-ion battery by hyperthermal hydrogen induced cross-linking of poly(ethylene oxide). Journal of Materials Chemistry A, 2014, 2, 11980-11986.	10.3	68
8	Conductive polymer nanocomposites with hierarchical multi-scale structures via self-assembly of carbon-nanotubes on graphene on polymer-microspheres. Nanoscale, 2014, 6, 7877-7888.	5.6	66
9	Highly Stretchable Superhydrophobic Composite Coating Based on Selfâ€Adaptive Deformation of Hierarchical Structures. Small, 2017, 13, 1602353.	10.0	62
10	Resolving the dilemma of gaining conductivity but losing environmental friendliness in producing polystyrene/graphene composites via optimizing the matrix-filler structure. Green Chemistry, 2013, 15, 821.	9.0	61
11	Fabrication of Polydimethylsiloxane films with special surface wettability by 3D printing. Composites Part B: Engineering, 2017, 129, 58-65.	12.0	55
12	Robust Succinonitrile-Based Gel Polymer Electrolyte for Lithium-Ion Batteries Withstanding Mechanical Folding and High Temperature. ACS Applied Materials & Samp; Interfaces, 2018, 10, 25384-25392.	8.0	54
13	Fast preparation of mechanically stable superhydrophobic surface by UV cross-linking of coating onto oxygen-inhibited layer of substrate. Chemical Engineering Journal, 2018, 338, 440-449.	12.7	52
14	Wet-grinding assisted ultrasonic dispersion of pristine multi-walled carbon nanotubes (MWCNTs) in chitosan solution. Colloids and Surfaces B: Biointerfaces, 2011, 86, 189-197.	5.0	48
15	Silver-nanoparticles-loaded chitosan foam as a flexible SERS substrate for active collecting analytes from both solid surface and solution. Talanta, 2019, 191, 241-247.	5.5	38
16	Flexible solid electrolyte based on UV cured polyurethane acrylate/succinonitrile-lithium salt composite compatibilized by tetrahydrofuran. Composites Part B: Engineering, 2017, 120, 35-41.	12.0	30
17	Rheological Investigations in Understanding Shear-Enhanced Crystallization of Isotactic Poly(propylene)/Multi-Walled Carbon Nanotube Composites. Macromolecular Rapid Communications, 2007, 28, 1257-1264.	3.9	27
18	SnO–Sn ₃ O ₄ heterostructural gas sensor with high response and selectivity to parts-per-billion-level NO ₂ at low operating temperature. RSC Advances, 2020, 10, 29843-29854.	3.6	22

#	Article	IF	CITATIONS
19	Building a mechanically stable polydimethylsiloxane/silica superhydrophobic coating on poly(chloro-p-xylylene) film by introducing a polydimethylsiloxane adhesive layer. Surface and Coatings Technology, 2018, 350, 201-210.	4.8	17
20	Toughening of recycled polystyrene used for TV backset. Journal of Applied Polymer Science, 2008, 109, 3725-3732.	2.6	16
21	Study of PE and iPP orientations on the surface of carbon nanotubes by using molecular dynamic simulations. Molecular Simulation, 2013, 39, 1013-1021.	2.0	15
22	Additive manufacturing of elastomeric foam with cell unit design for broadening compressive stress plateau. Rapid Prototyping Journal, 2018, 24, 1579-1585.	3.2	15
23	Phenotyping Bacteria through a Black-Box Approach: Amplifying Surface-Enhanced Raman Spectroscopy Spectral Differences among Bacteria by Inputting Appropriate Environmental Stress. Analytical Chemistry, 2022, 94, 6791-6798.	6.5	14
24	Conducting Polymer Nanocomposites: Recent Developments and Future Prospects. Springer Series on Polymer and Composite Materials, 2017, , 1-44.	0.7	13
25	Cleaving C–H bonds with hyperthermal H ₂ : facile chemistry to cross-link organic molecules under low chemical- and energy-loads. Green Chemistry, 2014, 16, 1316-1325.	9.0	12
26	Cross-Linking Poly(lactic acid) Film Surface by Neutral Hyperthermal Hydrogen Molecule Bombardment. Journal of Agricultural and Food Chemistry, 2015, 63, 10604-10610.	5.2	10
27	Patternable Poly(chloro-p-xylylene) Film with Tunable Surface Wettability Prepared by Temperature and Humidity Treatment on a Polydimethylsiloxane/Silica Coating. Materials, 2018, 11, 486.	2.9	9
28	Revisiting effects of microarchitecture on mechanics of elastomeric cellular materials. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	9
29	Realizing the Storage of Pressurized Hydrogen in Carbon Nanotubes Sealed with Aqueous Valves. Energy Technology, 2013, 1, 309-312.	3.8	8
30	Azobenzene dendronized carbon nanoparticles: the effect of light antenna. RSC Advances, 2014, 4, 18193-18197.	3.6	6
31	Preparation of Stable Wetting Surface by Hyperthermal Hydrogen Induced Cross-Linking of Poly(acrylic acid) on Poly(chloro- <i>p</i> -xylylene) Film. Journal of Physical Chemistry C, 2016, 120, 28598-28606.	3.1	5
32	Enhanced water vapor barrier property of poly(chloro-p-xylylene) film by formation of dense surface cross-linking layer via hyperthermal hydrogen treatment. RSC Advances, 2015, 5, 55713-55719.	3.6	4
33	Crack growth-driven wettability transition on carbon black/polybutadiene nanocomposite coatings <i>via</i> stretching. Soft Matter, 2019, 15, 7678-7685.	2.7	4
34	Lunar Dust-Mitigation Behavior of Aluminum Surfaces with Multiscale Roughness Prepared by a Composite Etching Method. ACS Applied Materials & Samp; Interfaces, 2022, 14, 34020-34028.	8.0	3