Mahdi Fazeli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3771896/publications.pdf

Version: 2024-02-01

102	1,293	567281	552781
papers	citations	h-index	g-index
103	103	103	840
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Low energy single event upset/single event transient-tolerant latch for deep subMicron technologies. IET Computers and Digital Techniques, 2009, 3, 289.	1.2	110
2	I-LEACH: An efficient routing algorithm to improve performance & amp; amp; to reduce energy consumption in Wireless Sensor Networks., 2013,,.		73
3	Feedback Redundancy: A Power Efficient SEU-Tolerant Latch Design for Deep Sub-Micron Technologies. , 2007, , .		72
4	Design of Robust SRAM Cells Against Single-Event Multiple Effects for Nanometer Technologies. IEEE Transactions on Device and Materials Reliability, 2015, 15, 429-436.	2.0	69
5	Soft error rate estimation of digital circuits in the presence of Multiple Event Transients (METs). , 2011, , .		53
6	Low cost soft error hardened latch designs for nano-scale CMOS technology in presence of process variation. Microelectronics Reliability, 2013, 53, 912-924.	1.7	49
7	Proposing a load balancing method based on Cuckoo Optimization Algorithm for energy management in cloud computing infrastructures. , 2015, , .		35
8	Single Event Multiple Upset (SEMU) Tolerant Latch Designs in Presence of Process and Temperature Variations. Journal of Circuits, Systems and Computers, 2015, 24, 1550007.	1.5	34
9	Hardware Trojan Detection Using an Advised Genetic Algorithm Based Logic Testing. Journal of Electronic Testing: Theory and Applications (JETTA), 2018, 34, 461-470.	1.2	34
10	Efficient algorithms to accurately compute derating factors of digital circuits. Microelectronics Reliability, 2012, 52, 1215-1226.	1.7	33
11	A Low-Power and SEU-Tolerant Switch Architecture for Network on Chips. , 2007, , .		31
12	Bee-MMT: A load balancing method for power consumption management in cloud computing. , 2013, , .		30
13	Coding Last Level STT-RAM Cache for High Endurance and Low Power. IEEE Computer Architecture Letters, 2014, 13, 73-76.	1.5	28
14	Soft Error-Tolerant Design of MRAM-Based Nonvolatile Latches for Sequential Logics. IEEE Transactions on Magnetics, 2015, 51, 1-14.	2.1	27
15	FTSPM: A Fault-Tolerant ScratchPad Memory. , 2013, , .		23
16	Single event multiple upset-tolerant SRAM cell designs for nano-scale CMOS technology. Turkish Journal of Electrical Engineering and Computer Sciences, 2017, 25, 1035-1047.	1.4	23
17	Low-Cost Scan-Chain-Based Technique to Recover Multiple Errors in TMR Systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2013, 21, 1454-1468.	3.1	22
18	Pure Magnetic Logic Circuits: A Reliability Analysis. IEEE Transactions on Magnetics, 2018, 54, 1-10.	2.1	22

#	Article	IF	CITATION
19	RTHS: A Low-Cost High-Performance Real-Time Hardware Sorter, Using a Multidimensional Sorting Algorithm. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 1601-1613.	3.1	22
20	SOFT ERROR RATE ESTIMATION FOR COMBINATIONAL LOGIC IN PRESENCE OF SINGLE EVENT MULTIPLE TRANSIENTS. Journal of Circuits, Systems and Computers, 2014, 23, 1450091.	1.5	19
21	A Software-Based Error Detection Technique Using Encoded Signatures. Defect and Fault Tolerance in VLSI Systems, Proceedings of the IEEE International Symposium on, 2006, , .	0.0	17
22	Distance-Based Segmentation: An Energy-Efficient Clustering Hierarchy for Wireless Microsensor Networks. , 2007, , .		17
23	An energy efficient circuit level technique to protect register file from MBUs and SETs in embedded processors., 2009,,.		17
24	Operand Width Aware Hardware Reuse: A low cost fault-tolerant approach to ALU design in embedded processors. Microelectronics Reliability, 2011, 51, 2374-2387.	1.7	17
25	Neural network based approach for time to crash prediction to cope with software aging. Journal of Systems Engineering and Electronics, 2015, 26, 407-414.	2.2	17
26	Design of ultra low power current mode logic gates using magnetic cells. AEU - International Journal of Electronics and Communications, 2018, 83, 270-279.	2.9	17
27	Directed Flooding: A Fault-Tolerant Routing Protocol for Wireless Sensor Networks. , 0, , .		15
28	A software-based concurrent error detection technique for power PC processor-based embedded systems. , 0 , , .		15
29	Combinatorial Constructions of Multi-erasure-Correcting Codes with Independent Parity Symbols for Storage Systems., 2007,,.		15
30	Reliability-oriented scheduling for static-priority real-time tasks in standby-sparing systems. Microprocessors and Microsystems, 2016, 45, 208-215.	2.8	15
31	An Efficient Data Aggregation Method for Event-Driven WSNs: A Modeling and Evaluation Approach. Wireless Personal Communications, 2015, 84, 745-764.	2.7	14
32	Design Space Exploration for Ultra-Low-Energy and Secure IoT MCUs. Transactions on Embedded Computing Systems, 2020, 19, 1-34.	2.9	14
33	Robust Register Caching: An Energy-Efficient Circuit-Level Technique to Combat Soft Errors in Embedded Processors. IEEE Transactions on Device and Materials Reliability, 2010, 10, 208-221.	2.0	13
34	Hardware enlightening: No where to hide your Hardware Trojans!., 2016,,.		13
35	FEDC: Control Flow Error Detection and Correction for Embedded Systems without Program Interruption. , 2008, , .		12
36	A fast and accurate multi-cycle soft error rate estimation approach to resilient embedded systems design. , 2010, , .		12

#	Article	IF	Citations
37	ICA-MMT: A load balancing method in cloud computing environment. , 2015, , .		11
38	A Low Energy Soft Error-Tolerant Register File Architecture for Embedded Processors. , 2008, , .		10
39	A Hierarchical Routing Protocol for Energy Load Balancing in Wireless Sensor Networks., 2007,,.		9
40	A Review on Evaluation and Configuration of Fault Injection Attack Instruments to Design Attack Resistant MCU-Based IoT Applications. Electronics (Switzerland), 2020, 9, 1153.	3.1	9
41	A Checkpointing Technique for Rollback Error Recovery in Embedded Systems. , 2006, , .		8
42	Error Detection Enhancement in PowerPC Architecture-based Embedded Processors. Journal of Electronic Testing: Theory and Applications (JETTA), 2008, 24, 21-33.	1.2	8
43	A low-overhead and reliable switch architecture for Network-on-Chips. The Integration VLSI Journal, 2010, 43, 268-278.	2.1	8
44	A Fast Analytical Approach to Multi-cycle Soft Error Rate Estimation of Sequential Circuits., 2010,,.		8
45	An efficient technique to tolerate MBU faults in register file of embedded processors. , 2012, , .		8
46	HAFTA: Highly Available Fault-Tolerant Architecture to Protect SRAM-Based Reconfigurable Devices Against Multiple Bit Upsets. IEEE Transactions on Device and Materials Reliability, 2013, 13, 203-212.	2.0	8
47	A Cache-Assisted Scratchpad Memory for Multiple-Bit-Error Correction. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24, 3296-3309.	3.1	8
48	Performance evaluation of a routing protocol for wireless sensor networks., 2006,,.		7
49	Memory Mapped SPM: Protecting Instruction Scratchpad Memory in Embedded Systems against Soft Errors. , 2012, , .		7
50	mGate: A Universal Magnetologic Gate for Design of Energy Efficient Digital Circuits. IEEE Transactions on Magnetics, 2017, 53, 1-13.	2.1	7
51	Mystic: Mystifying IP Cores Using an Always-ON FSM Obfuscation Method., 2018,,.		7
52	Efficient Scheduling of Dependent Tasks in Many-Core Real-Time System Using a Hardware Scheduler. , 2021, , .		7
53	Soft error estimation and mitigation of digital circuits by characterizing input patterns of logic gates. Microelectronics Reliability, 2014, 54, 1412-1420.	1.7	6
54	NOSTalgy: Near-Optimum Run-Time STT-MRAM Quality-Energy Knob Management for Approximate Computing Applications. IEEE Transactions on Computers, 2021, 70, 414-427.	3.4	6

#	Article	IF	Citations
55	MagCiM: A Flexible and Non-Volatile Computing-in-Memory Processor for Energy-Efficient Logic Computation. IEEE Access, 2022, 10, 35445-35459.	4.2	6
56	A Solution to Single Point of Failure Using Voter Replication and Disagreement Detection. , 2006, , .		5
57	Software-based control flow error detection and correction using branch triplication. , 2011, , .		5
58	Adaptive hybrid position/force control for grinding applications. , 2012, , .		5
59	OLDA: An Efficient On-Line Data Aggregation Method for Wireless Sensor Networks. , 2013, , .		5
60	Performance/energy aware task migration algorithm for manyâ€core chips. IET Computers and Digital Techniques, 2016, 10, 165-173.	1.2	5
61	Energy aware and reliable STT-RAM based cache design for 3D embedded chip-multiprocessors. , 2017, , .		5
62	RASMAP: An efficient heuristic application mapping algorithm for network-on-chips. , 2016, , .		4
63	ARMICA-Improved: A New Approach for Association Rule Mining. Lecture Notes in Computer Science, 2017, , 296-306.	1.3	4
64	A multi-application approach for synthesizing custom network-on-chips. Journal of Supercomputing, 2022, 78, 15358-15380.	3.6	4
65	A novel peak and deep current mode control for two switches buck-boost converter. IEEE Applied Power Electronics Conference and Exposition, 2008, , .	0.0	3
66	Phase Change Memory lifetime enhancement via online data swapping. The Integration VLSI Journal, 2016, 54, 47-55.	2.1	3
67	An energy efficient synthesis flow for application specific SoC design. The Integration VLSI Journal, 2021, 81, 331-341.	2.1	3
68	Transient Error Detection in Embedded Systems Using Reconfigurable Components. , 2006, , .		2
69	B-Jump: Roller length, sequent depth, and relative energy loss using Artificial Neural Networks. Journal of Hydraulic Research/De Recherches Hydrauliques, 2007, 45, 529-537.	1.7	2
70	A Power Efficient Masking Technique for Design of Robust Embedded Systems against SEUs and SETs. , 2008, , .		2
71	A Low Cost circuit level fault detection technique to Full Adder design. , $2011,\ldots$		2
72	Low Cost Concurrent Error Detection for On-Chip Memory Based Embedded Processors., 2011,,.		2

#	Article	IF	CITATIONS
73	Value-Aware low-power register file architecture. , 2012, , .		2
74	Microâ€architectural approach to the efficient employment of STTRAM cells in a microprocessor register file. IET Computers and Digital Techniques, 2017, 11, 1-7.	1.2	2
75	An Efficient Programming Skeleton for Clusters of Multi-Core Processors. International Journal of Parallel Programming, 2018, 46, 1094-1109.	1.5	2
76	Vulnerability modelling of cryptoâ€chips against scanâ€based attacks. IET Information Security, 2018, 12, 543-550.	1.7	2
77	Application Specific Networks-on-Chip Synthesis: An Energy Efficient Approach. , 2018, , .		2
78	Ultra-low power and reliable magnetic based interconnects for nano-scale technologies. Microelectronics Journal, 2019, 90, 39-47.	2.0	2
79	An Energy-Efficient Reliable Heterogeneous Uncore Architecture for Future 3D Chip-Multiprocessors. Journal of Circuits, Systems and Computers, 2019, 28, 1950224.	1.5	2
80	CyEnSe: Cyclic energy-aware scheduling for energy-harvested embedded systems. Microprocessors and Microsystems, 2022, 89, 104421.	2.8	2
81	A Cordic-Based Processor Extension for Scalar and Vector Processing. , 0, , .		1
82	Experimental Evaluation of Three Concurrent Error Detection Mechanisms. , 2006, , .		1
83	Reducing Power Consumption in NoC Design with no Effect on Performance and Reliability. , 2007, , .		1
84	A Power Efficient Approach to Fault-Tolerant Register File Design. , 2008, , .		1
85	A Novel SET/SEU Hardened Parallel I/O Port. , 2009, , .		1
86	An efficient fault tolerant routing algorithm for binary cube interconnection networks. , 2012, , .		1
87	Application of PCR and SYBR Green Q Rti-PCR Assays for the Identification and Quantification of Chicken Meat Under Different Cooking Conditions. Food Biotechnology, 2013, 27, 249-260.	1.5	1
88	A low power hybrid MTJ/CMOS (4-2) compressor for fast arithmetic circuits. , 2015, , .		1
89	High output hamming-distance achievement by a greedy logic masking approach. , 2016, , .		1
90	Restricting Switching Activity Using Logic Locking to Improve Power Analysis-Based Trojan Detection. , $2019, \ldots$		1

#	Article	IF	CITATIONS
91	Protecting scratchpad memory addresses against soft errors. Microelectronics Reliability, 2020, 111, 113741.	1.7	1
92	Joint VNF Load Balancing and Service Auto-Scaling in NFV with Multimedia Case Study., 2020,,.		1
93	Joint Effects of Aging and Process Variations on Soft Error Rate of Nano-Scale Digital Circuits. Journal of Circuits, Systems and Computers, 2021, 30, 2150012.	1.5	1
94	An In-Depth Vulnerability Analysis of RISC-V Micro-Architecture Against Fault Injection Attack. , 2021, , .		1
95	Cylindrical Silicon Nanowire Transistor Modeling Based on Adaptive Neuro-Fuzzy Inference System (ANFIS). Journal of Electrical Engineering and Technology, 2013, 8, 1163-1168.	2.0	1
96	Scanâ€based attack tolerance with minimum testability loss: a gateâ€level approach. IET Information Security, 2020, 14, 459-469.	1.7	1
97	Stability analysis of a peak and deep current mode buck-boost converter. , 2010, , .		0
98	A parallel clustering algorithm on the star graph and its performance. Mathematical and Computer Modelling, 2013, 58, 886-897.	2.0	0
99	The More the Safe, the Less the Unsafe: An efficient method to unauthenticated packets detection in WSNs., 2015,,.		0
100	Reliability and Power Optimization in 3D-Stacked Cache Using a Run-Time Reconfiguration Procedure. , 2017, , .		0
101	CONFISCA: An SIMD-Based Concurrent FI and SCA Countermeasure with Switchable Performance and Security Modes. Cryptography, 2021, 5, 13.	2.3	0
102	A Fault Tolerant Approach to Object Oriented Design and Synthesis of Embedded Systems. Lecture Notes in Computer Science, 2005, , 143-153.	1.3	0