Shalini Lal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3771597/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering the (In, Al, Ga)N back-barrier to achieve high channel-conductivity for extremely scaled channel-thicknesses in N-polar GaN high-electron-mobility-transistors. Applied Physics Letters, 2014, 104, 092107.	3.3	26
2	Very high channel conductivity in ultra-thin channel N-polar GaN/(AlN, InAlN, AlGaN) high electron mobility hetero-junctions grown by metalorganic chemical vapor deposition. Applied Physics Letters, 2013, 102, 232104.	3.3	19
3	Wafer-Bonded p-n Heterojunction of GaAs and Chemomechanically Polished N-Polar GaN. IEEE Electron Device Letters, 2013, 34, 42-44.	3.9	18
4	InGaAs-InGaN Wafer-Bonded Current Aperture Vertical Electron Transistors (BAVETs). Journal of Electronic Materials, 2012, 41, 857-864.	2.2	10
5	Barrier reduction via implementation of InGaN interlayer in wafer-bonded current aperture vertical electron transistors consisting of InGaAs channel and N-polar GaN drain. Applied Physics Letters, 2015, 106, .	3.3	4
6	Suppression of Anomalously Large Threshold Voltage in Wafer-Bonded Vertical Transistors by Enhancing Critical Field to Impact Ionization. IEEE Transactions on Electron Devices, 2018, 65, 1079-1086.	3.0	3
7	Controlling electronic properties of wafer-bonded interfaces among dissimilar materials: A path to developing novel wafer-bonded devices. , 2013, , .		1
8	Vertical electron transistors with In <inf>0.53</inf> Ga <inf>0.47</inf> As channel and N-polar In <inf>0.1</inf> Ga <inf>0.9</inf> N/GaN drain achieved by direct wafer-bonding. , 2014, , .		1
9	Experimental demonstration of a wafer-bonded heterostructure based unipolar transistor with In <inf>0.53</inf> Ga <inf>0.47</inf> as channel and III-N drain. , 2012, , .		0
10	Controlling electronic properties of wafer-bonded interfaces among dissimilar materials: A path to developing novel wafer-bonded devices. , 2013, , .		0