
Trent Ford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3771508/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Future changes in the transitions of <scp>monthlyâ€toâ€seasonal</scp> precipitation extremes over the Midwest in Coupled Model Intercomparison Project Phase 6 models. International Journal of Climatology, 2023, 43, 255-274.	1.5	6
2	Characterizing winter season severity in the Midwest United States, part <scp>II</scp> : Interannual variability. International Journal of Climatology, 2022, 42, 3499-3516.	1.5	4
3	Development of a Flash Drought Intensity Index. Atmosphere, 2021, 12, 741.	1.0	25
4	Triple Collocation Evaluation of In Situ Soil Moisture Observations from 1200+ Stations as part of the U.S. National Soil Moisture Network. Journal of Hydrometeorology, 2020, 21, 2537-2549.	0.7	8
5	United States Heat Wave Frequency and Arctic Ocean Marginal Sea Ice Variability. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6247-6264.	1.2	10
6	Projected Changes in United States Regional Extreme Heat Days Derived From Bivariate Quantile Mapping of CMIP5 Simulations. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5214-5232.	1.2	9
7	Comparison of Contemporary In Situ, Model, and Satellite Remote Sensing Soil Moisture With a Focus on Drought Monitoring. Water Resources Research, 2019, 55, 1565-1582.	1.7	90
8	Flash Droughts: A Review and Assessment of the Challenges Imposed by Rapid-Onset Droughts in the United States. Bulletin of the American Meteorological Society, 2018, 99, 911-919.	1.7	317
9	Evaluation of heat wave forecasts seamlessly across subseasonal timescales. Npj Climate and Atmospheric Science, 2018, 1, .	2.6	29
10	Multiâ€decadal variability of soil moisture–temperature coupling over the contiguous United States modulated by Pacific and Atlantic sea surface temperatures. International Journal of Climatology, 2017, 37, 1400-1415.	1.5	12
11	Logistic regression analysis of drought persistence in East China. International Journal of Climatology, 2017, 37, 1444-1455.	1.5	19
12	Association of synoptic-scale atmospheric patterns with flash flooding in watersheds of the New York City water supply system. International Journal of Climatology, 2017, 37, 358-370.	1.5	11
13	Characterizing extreme and oppressive heat waves in Illinois. Journal of Geophysical Research D: Atmospheres, 2017, 122, 682-698.	1.2	24
14	Connections between northâ€central United States summer hydroclimatology and Arctic sea ice variability. International Journal of Climatology, 2017, 37, 4434-4450.	1.5	14
15	Comparison of Three Methods for Vertical Extrapolation of Soil Moisture in Oklahoma. Vadose Zone Journal, 2017, 16, 1-19.	1.3	16
16	Meteorological conditions associated with the onset of flash drought in the Eastern United States. Agricultural and Forest Meteorology, 2017, 247, 414-423.	1.9	148
17	Recent Changes in U.S. Regional Heat Wave Characteristics in Observations and Reanalyses. Journal of Applied Meteorology and Climatology, 2017, 56, 2621-2636.	0.6	31
18	Oppressive Heat Events in Illinois Related to Antecedent Wet Soils. Journal of Hydrometeorology, 2016, 17, 2713-2726.	0.7	12

TRENT FORD

#	Article	IF	CITATIONS
19	The Observation Record Length Necessary to Generate Robust Soil Moisture Percentiles. Journal of Applied Meteorology and Climatology, 2016, 55, 2131-2149.	0.6	16
20	Surface–Atmosphere Moisture Interactions in the Frozen Ground Regions of Eurasia. Scientific Reports, 2016, 6, 19163.	1.6	16
21	The North American Soil Moisture Database: Development and Applications. Bulletin of the American Meteorological Society, 2016, 97, 1441-1459.	1.7	108
22	On the utility of in situ soil moisture observations for flash drought early warning in Oklahoma, USA. Geophysical Research Letters, 2015, 42, 9790-9798.	1.5	103
23	Synoptic conditions related to soil moistureâ€atmosphere interactions and unorganized convection in Oklahoma. Journal of Geophysical Research D: Atmospheres, 2015, 120, 11,519.	1.2	23
24	Soil moisture–precipitation coupling: observations from the Oklahoma Mesonet and underlying physical mechanisms. Hydrology and Earth System Sciences, 2015, 19, 3617-3631.	1.9	45
25	Comparison of NLDAS-2 Simulated and NASMD Observed Daily Soil Moisture. Part I: Comparison and Analysis. Journal of Hydrometeorology, 2015, 16, 1962-1980.	0.7	77
26	Comparison of NLDAS-2 Simulated and NASMD Observed Daily Soil Moisture. Part II: Impact of Soil Texture Classification and Vegetation Type Mismatches. Journal of Hydrometeorology, 2015, 16, 1981-2000.	0.7	27
27	Does Afternoon Precipitation Occur Preferentially over Dry or Wet Soils in Oklahoma?. Journal of Hydrometeorology, 2015, 16, 874-888.	0.7	56
28	Automated Quality Control of In Situ Soil Moisture from the North American Soil Moisture Database Using NLDAS-2 Products. Journal of Applied Meteorology and Climatology, 2015, 54, 1267-1282.	0.6	23
29	Soil moisture variability in Iowa. International Journal of Climatology, 2015, 35, 2837-2848.	1.5	12
30	Assessment of observed and modelâ€derived soil moistureâ€evaporative fraction relationships over the United States Southern Great Plains. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6279-6291.	1.2	41
31	In situ soil moisture coupled with extreme temperatures: A study based on the Oklahoma Mesonet. Geophysical Research Letters, 2014, 41, 4727-4734.	1.5	39
32	Influence of MODIS-Derived Dynamic Vegetation on VIC-Simulated Soil Moisture in Oklahoma. Journal of Hydrometeorology, 2013, 14, 1910-1921.	0.7	41
33	Characterizing Winter Season Severity in the Midwest United States, Part I: Climatology & Recent Trends. International Journal of Climatology, 0, , .	1.5	3