
Jose M Casasnovas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3771414/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). Journal of Experimental Medicine, 1996, 184, 1101-1109.	8.5	1,383
2	TIM-1 and TIM-4 Glycoproteins Bind Phosphatidylserine and Mediate Uptake of Apoptotic Cells. Immunity, 2007, 27, 927-940.	14.3	536
3	<i>TIM</i> genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunological Reviews, 2010, 235, 172-189.	6.0	531
4	T Cell/Transmembrane, Ig, and Mucin-3 Allelic Variants Differentially Recognize Phosphatidylserine and Mediate Phagocytosis of Apoptotic Cells. Journal of Immunology, 2010, 184, 1918-1930.	0.8	262
5	Structures of T Cell Immunoglobulin Mucin Protein 4 Show a Metal-Ion-Dependent Ligand Binding Site where Phosphatidylserine Binds. Immunity, 2007, 27, 941-951.	14.3	206
6	A dimeric crystal structure for the N-terminal two domains of intercellular adhesion molecule-1. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 4134-4139.	7.1	204
7	Structural Bases of Coronavirus Attachment to Host Aminopeptidase N and Its Inhibition by Neutralizing Antibodies. PLoS Pathogens, 2012, 8, e1002859.	4.7	155
8	Structures of T Cell Immunoglobulin Mucin Receptors 1 and 2 Reveal Mechanisms for Regulation of Immune Responses by the TIM Receptor Family. Immunity, 2007, 26, 299-310.	14.3	147
9	Crystal structure of two CD46 domains reveals an extended measles virus-binding surface. EMBO Journal, 1999, 18, 2911-2922.	7.8	143
10	Distinct cellular receptor interactions in poliovirus and rhinoviruses. EMBO Journal, 2000, 19, 1207-1216.	7.8	118
11	Kinetics and Thermodynamics of Virus Binding to Receptor Journal of Biological Chemistry, 1995, 270, 13216-13224.	3.4	117
12	Structure of the measles virus hemagglutinin bound to the CD46 receptor. Nature Structural and Molecular Biology, 2010, 17, 124-129.	8.2	117
13	Crystal structure of ICAM-2 reveals a distinctive integrin recognition surface. Nature, 1997, 387, 312-315.	27.8	115
14	<i>Candida albicans</i> β-Glucan Exposure Is Controlled by the Fungal <i>CEK1</i> -Mediated Mitogen-Activated Protein Kinase Pathway That Modulates Immune Responses Triggered through Dectin-1. Infection and Immunity, 2010, 78, 1426-1436.	2.2	90
15	Adenovirus type 11 binding alters the conformation of its receptor CD46. Nature Structural and Molecular Biology, 2007, 14, 164-166.	8.2	86
16	Structure of the Extracellular Portion of CD46 Provides Insights into Its Interactions with Complement Proteins and Pathogens. PLoS Pathogens, 2010, 6, e1001122.	4.7	86
17	COVID-19 Vaccine Candidates Based on Modified Vaccinia Virus Ankara Expressing the SARS-CoV-2 Spike Protein Induce Robust T- and B-Cell Immune Responses and Full Efficacy in Mice. Journal of Virology, 2021, 95, .	3.4	78
18	Pathway of rhinovirus disruption by soluble intercellular adhesion molecule 1 (ICAM-1): an intermediate in which ICAM-1 is bound and RNA is released. Journal of Virology, 1994, 68, 5882-5889.	3.4	74

JOSE M CASASNOVAS

#	Article	IF	CITATIONS
19	An atomic resolution view of ICAM recognition in a complex between the binding domains of ICAM-3 and integrin ÂLÂ2. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3366-3371.	7.1	70
20	Apoptotic Cells Activate NKT Cells through T Cell Ig-Like Mucin-Like–1 Resulting in Airway Hyperreactivity. Journal of Immunology, 2010, 185, 5225-5235.	0.8	67
21	Receptor Priming of Major Group Human Rhinoviruses for Uncoating and Entry at Mild Low-pH Environments. Journal of Virology, 2003, 77, 11985-11991.	3.4	65
22	The structure of immunoglobulin superfamily domains 1 and 2 of MAdCAM-1 reveals novel features important for integrin recognition. Structure, 1998, 6, 793-801.	3.3	64
23	Distinct Kinetics for Binding of the CD46 and SLAM Receptors to Overlapping Sites in the Measles Virus Hemagglutinin Protein. Journal of Biological Chemistry, 2002, 277, 32294-32301.	3.4	63
24	Contribution of N-Linked Glycans to the Conformation and Function of Intercellular Adhesion Molecules (ICAMs). Journal of Biological Chemistry, 2005, 280, 5854-5861.	3.4	61
25	TIM-1 Glycoprotein Binds the Adhesion Receptor P-Selectin and Mediates T Cell Trafficking during Inflammation and Autoimmunity. Immunity, 2014, 40, 542-553.	14.3	60
26	Structural Analysis of Human Rhinovirus Complexed with ICAM-1 Reveals the Dynamics of Receptor-Mediated Virus Uncoating. Journal of Virology, 2003, 77, 6101-6107.	3.4	58
27	A structural view of coronavirus–receptor interactions. Virus Research, 2014, 194, 3-15.	2.2	49
28	Binding of Hepatitis A Virus to Its Cellular Receptor 1 Inhibits T-Regulatory Cell Functions in Humans. Gastroenterology, 2012, 142, 1516-1525.e3.	1.3	47
29	An Unusual Allosteric Mobility of the C-Terminal Helix of a High-Affinity αL Integrin I Domain Variant Bound to ICAM-5. Molecular Cell, 2008, 31, 432-437.	9.7	43
30	Role of enhanced receptor engagement in the evolution of a pandemic acute hemorrhagic conjunctivitis virus. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 397-402.	7.1	43
31	Oxidized Low-Density Lipoprotein Receptor in Lymphocytes Prevents Atherosclerosis and Predicts Subclinical Disease. Circulation, 2019, 139, 243-255.	1.6	36
32	SARS-CoV-2 Cysteine-like Protease Antibodies Can Be Detected in Serum and Saliva of COVID-19–Seropositive Individuals. Journal of Immunology, 2020, 205, 3130-3140.	0.8	32
33	Virus-Receptor Interactions and Receptor-Mediated Virus Entry into Host Cells. Sub-Cellular Biochemistry, 2013, 68, 441-466.	2.4	26
34	Allosteric inhibition of aminopeptidase N functions related to tumor growth and virus infection. Scientific Reports, 2017, 7, 46045.	3.3	25
35	Fructose 1-Phosphate Is the Preferred Effector of the Metabolic Regulator Cra of Pseudomonas putida. Journal of Biological Chemistry, 2011, 286, 9351-9359.	3.4	23
36	Rhinovirus-stabilizing activity of artificial VLDL-receptor variants defines a new mechanism for virus neutralization by soluble receptors. FEBS Letters, 2005, 579, 5507-5511.	2.8	22

JOSE M CASASNOVAS

#	Article	IF	CITATIONS
37	Full efficacy and long-term immunogenicity induced by the SARS-CoV-2 vaccine candidate MVA-CoV2-S in mice. Npj Vaccines, 2022, 7, 17.	6.0	19
38	Antigenic modules in the N-terminal S1 region of the transmissible gastroenteritis virus spike protein. Journal of General Virology, 2011, 92, 1117-1126.	2.9	18
39	SARS-CoV-2 Spike Protein and Its Receptor Binding Domain Promote a Proinflammatory Activation Profile on Human Dendritic Cells. Cells, 2021, 10, 3279.	4.1	16
40	The obtention of simian virus 40 recombinants carrying d(CG . GC)n, d(CA . GT)n and d(CT . GA)n sequences. Stability of the inserted simple repeating sequences. FEBS Journal, 1987, 167, 489-492.	0.2	15
41	Specificity switching in virus–receptor complexes. Current Opinion in Structural Biology, 2009, 19, 181-188.	5.7	15
42	The dynamics of receptor recognition by human rhinoviruses. Trends in Microbiology, 2000, 8, 251-254.	7.7	14
43	Crystal structures of an ICAM-5 ectodomain fragment show electrostatic-based homophilic adhesions. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1934-1943.	2.5	10
44	Measles Virus Hemagglutinin epitopes immunogenic in natural infection and vaccination are targeted by broad or genotype-specific neutralizing monoclonal antibodies. Virus Research, 2017, 236, 30-43.	2.2	10
45	CD4+ T Cell Immune Specificity Changes After Vaccination in Healthy And COVID-19 Convalescent Subjects. Frontiers in Immunology, 2021, 12, 755891.	4.8	10
46	Nanobodies Protecting From Lethal SARS-CoV-2 Infection Target Receptor Binding Epitopes Preserved in Virus Variants Other Than Omicron. Frontiers in Immunology, 2022, 13, 863831.	4.8	10
47	Singleâ€reaction multiâ€antigen serological test for comprehensive evaluation of SARSâ€CoVâ€2 patients by flow cytometry. European Journal of Immunology, 2021, 51, 2633-2640.	2.9	9
48	Kinetics of Receptor and Virus Interaction and Receptor-Induced Virus Disruption: Methods for Study with Surface Plasmon Resonance. Methods, 1994, 6, 157-167.	3.8	7
49	Cross-reactive cellular, but not humoral, immunity is detected between OC43 and SARS-CoV-2 NPs in people not infected with SARS-CoV-2: Possible role of cTFH cells. Journal of Leukocyte Biology, 2022, 112, 339-346.	3.3	7
50	Distinct Trafficking of Cell Surface and Endosomal <scp>TIM</scp> â€1 to the Immune Synapse. Traffic, 2015, 16, 1193-1207.	2.7	6
51	Crystallization and preliminary crystallographic analysis of the measles virus hemagglutinin in complex with the CD46 receptor. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 91-94.	0.7	3
52	Prophylactic uses of integrin CD18-βA peptide in a murine polymicrobial peritonitis model. World Journal of Gastroenterology, 2010, 16, 2648.	3.3	3
53	Methods for preparation of low abundance glycoproteins from mammalian cell supernatants. International Journal of Biological Macromolecules, 2006, 39, 151-156.	7.5	2