Rahmatullah Jan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/377124/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant Secondary Metabolite Biosynthesis and Transcriptional Regulation in Response to Biotic and Abiotic Stress Conditions. Agronomy, 2021, 11, 968.	3.0	256
2	Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress. BMC Microbiology, 2020, 20, 175.	3.3	147
3	Synergistic association of endophytic fungi enhances Glycine max L. resilience to combined abiotic stresses: Heavy metals, high temperature and drought stress. Industrial Crops and Products, 2020, 143, 111931.	5.2	120
4	Metal Resistant Endophytic Bacteria Reduces Cadmium, Nickel Toxicity, and Enhances Expression of Metal Stress Related Genes with Improved Growth of Oryza Sativa, via Regulating Its Antioxidant Machinery and Endogenous Hormones. Plants, 2019, 8, 363.	3.5	111
5	Salt tolerance of Glycine max .L induced by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system. Plant Physiology and Biochemistry, 2018, 128, 13-23.	5.8	84
6	Halotolerant bacteria mitigate the effects of salinity stress on soybean growth by regulating secondary metabolites and molecular responses. BMC Plant Biology, 2021, 21, 176.	3.6	76
7	Halotolerant Rhizobacterial Strains Mitigate the Adverse Effects of NaCl Stress in Soybean Seedlings. BioMed Research International, 2019, 2019, 1-15.	1.9	69
8	Extending thermotolerance to tomato seedlings by inoculation with SA1 isolate of Bacillus cereus and comparison with exogenous humic acid application. PLoS ONE, 2020, 15, e0232228.	2.5	59
9	Halo-tolerant rhizospheric Arthrobacter woluwensis AK1 mitigates salt stress and induces physio-hormonal changes and expression of GmST1 and GmLAX3 in soybean. Symbiosis, 2019, 77, 9-21.	2.3	47
10	Effect of Silicate and Phosphate Solubilizing Rhizobacterium Enterobacter ludwigii GAK2 on Oryza sativa L. under Cadmium Stress. Journal of Microbiology and Biotechnology, 2020, 30, 118-126.	2.1	40
11	Rhizobacteria AK1 remediates the toxic effects of salinity stress via regulation of endogenous phytohormones and gene expression in soybean. Biochemical Journal, 2019, 476, 2393-2409.	3.7	36
12	Overexpression of OsF3H modulates WBPH stress by alteration of phenylpropanoid pathway at a transcriptomic and metabolomic level in Oryza sativa. Scientific Reports, 2020, 10, 14685.	3.3	35
13	Enhanced Flavonoid Accumulation Reduces Combined Salt and Heat Stress Through Regulation of Transcriptional and Hormonal Mechanisms. Frontiers in Plant Science, 2021, 12, 796956.	3.6	35
14	Ethno-medicinal survey of important plants practiced by indigenous community at Ladha subdivision, South Waziristan agency, Pakistan. Journal of Ethnobiology and Ethnomedicine, 2016, 12, 53.	2.6	32
15	Flavonone 3-hydroxylase Relieves Bacterial Leaf Blight Stress in Rice via Overaccumulation of Antioxidant Flavonoids and Induction of Defense Genes and Hormones. International Journal of Molecular Sciences, 2021, 22, 6152.	4.1	26
16	Drought and UV Radiation Stress Tolerance in Rice Is Improved by Overaccumulation of Non-Enzymatic Antioxidant Flavonoids. Antioxidants, 2022, 11, 917.	5.1	22
17	Overexpression of OsCM alleviates BLB stress via phytohormonal accumulation and transcriptional modulation of defense-related genes in Oryza sativa. Scientific Reports, 2020, 10, 19520.	3.3	17
18	Endophytic fungus <i>Bipolaris</i> sp. CSL-1 induces salt tolerance in <i>Glycine max.</i> L via modulating its endogenous hormones, antioxidative system and gene expression. Journal of Plant Interactions, 2022, 17, 319-332.	2.1	16

Rahmatullah Jan

#	Article	IF	CITATIONS
19	Applications of CRISPR/Cas9 as New Strategies for Short Breeding to Drought Gene in Rice. Frontiers in Plant Science, 2022, 13, 850441.	3.6	14
20	Complete Chloroplast Genome Characterization of Oxalis Corniculata and Its Comparison with Related Species from Family Oxalidaceae. Plants, 2020, 9, 928.	3.5	12
21	Over-Expression of Chorismate Mutase Enhances the Accumulation of Salicylic Acid, Lignin, and Antioxidants in Response to the White-Backed Planthopper in Rice Plants. Antioxidants, 2021, 10, 1680.	5.1	8
22	Screening and Identification of Brown Planthopper Resistance Genes OsCM9 in Rice. Agronomy, 2020, 10, 1865.	3.0	7
23	The dynamic history of gymnosperm plastomes: Insights from structural characterization, comparative analysis, phylogenomics, and time divergence. Plant Genome, 2021, 14, e20130.	2.8	7
24	Unraveling the Genome Sequence of Plant Growth Promoting Aspergillus niger (CSR3) Provides Insight into the Synthesis of Secondary Metabolites and Its Comparative Genomics. Journal of Fungi (Basel, Switzerland), 2022, 8, 107.	3.5	7
25	Modulation of sugar and nitrogen in callus induction media alter PAL pathway, SA and biomass accumulation in rice callus. Plant Cell, Tissue and Organ Culture, 2020, 143, 517-530.	2.3	5
26	Discovery and Validation of a Novel Step Catalyzed by OsF3H in the Flavonoid Biosynthesis Pathway. Biology, 2021, 10, 32.	2.8	5
27	The Plastome Sequences of Triticum sphaerococcum (ABD) and Triticum turgidum subsp. durum (AB) Exhibit Evolutionary Changes, Structural Characterization, Comparative Analysis, Phylogenomics and Time Divergence. International Journal of Molecular Sciences, 2022, 23, 2783.	4.1	5
28	Gravistimulation effects on Oryza sativa amino acid profile, growth pattern and expression of OsPIN genes. Scientific Reports, 2020, 10, 17303.	3.3	4
29	Identification of a Major QTL and Validation of Related Genes for Tiller Angle in Rice Based on QTL Analysis. International Journal of Molecular Sciences, 2022, 23, 5192.	4.1	4
30	The Quantitative Trait Loci Mapping of Rice Plant and the Components of Its Extract Confirmed the Anti-Inflammatory and Platelet Aggregation Effects In Vitro and In Vivo. Antioxidants, 2021, 10, 1691.	5.1	2
31	Genotype and Phenotype Interaction between OsWKRYq6 and BLB after Xanthomonas oryzae pv. Oryzae Inoculation in the Field. Plants, 2022, 11, 287.	3.5	2
32	QTL Mapping and Candidate Gene Analysis for Seed Germination Response to Low Temperature in Rice. International Journal of Molecular Sciences, 2022, 23, 7379.	4.1	2
33	Analysis of quantitative trait loci (QTLs) associated with wettability in rice (Oryza sativa L.). Euphytica, 2019, 215, 1.	1.2	1