
Heinrich Traphöner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3770692/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of evolving yield surfaces of dual-phase steels. Journal of Materials Processing Technology, 2021, 287, 116314.	6.3	44
2	Determining cyclic flow curves using the in-plane torsion test. CIRP Annals - Manufacturing Technology, 2015, 64, 261-264.	3.6	34
3	Material characterization for plane and curved sheets using the in-plane torsion test – An overview. Journal of Materials Processing Technology, 2018, 257, 278-287.	6.3	29
4	Methods for measuring large shear strains in in-plane torsion tests. Journal of Materials Processing Technology, 2021, 287, 116516.	6.3	29
5	Accurate springback prediction in deep drawing using pre-strain based multiple cyclic stress–strain curves in finite element simulation. International Journal of Mechanical Sciences, 2016, 110, 229-241.	6.7	27
6	Influence of manufacturing processes on material characterization with the grooved in-plane torsion test. International Journal of Mechanical Sciences, 2018, 146-147, 544-555.	6.7	20
7	Process-oriented Flow Curve Determination at Mechanical Joining. Procedia Manufacturing, 2020, 47, 368-374.	1.9	11
8	Large strain flow curve identification for sheet metal. Journal of Materials Processing Technology, 2022, 308, 117725.	6.3	6
9	Material characterization for plane and curved sheets using the in-plane torsion test – an overview. Procedia Engineering, 2017, 207, 1934-1939.	1.2	5
10	Analytical model of the in-plane torsion test. Acta Mechanica, 2022, 233, 641-663.	2.1	4
11	Experimental setup to characterize flow-induced anisotropy of sheet metals. IOP Conference Series: Materials Science and Engineering, 2018, 418, 012085.	0.6	3
12	Influence of the preheating strategy on the deep drawing of extruded magnesium alloy ME20 sheets. IOP Conference Series: Materials Science and Engineering, 2019, 651, 012067.	0.6	3
13	Large strain flow curves of sheet metals by sheet extrusion. CIRP Annals - Manufacturing Technology, 2021, 70, 247-250.	3.6	3
14	Influence of mechanical characterization on the prediction of necking issues during sheet flow forming process. Journal of Materials Processing Technology, 2022, , 117620.	6.3	3
15	Estimation and Prevention of Strain Localization in Shear Tests. Minerals, Metals and Materials Series, 2021, , 691-707.	0.4	2
16	Characterization of Flow Curves for Ultra-Thin Steel Sheets With the In-Plane Torsion Test. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2022, 144, .	2.2	2
17	Characterization of Flow Induced Anisotropy in Sheet Metal at Large Strain. Experimental Mechanics, 2022, 62, 441-458.	2.0	2

18 Integration of new concepts and features into forming technology lectures. , 2016, , .

1

#	Article	IF	CITATIONS
19	Characterization of Flow Curves for Ultra-Thin Steel Sheets With the In-Plane Torsion Test. , 2021, , .		Ο
20	Sheet Material Characterization with the In-Plane Torsion Test: Cyclic Loading, Grooved Specimen and Twin Bridge Specimen. , 2015, , 17-21.		0