Takayoshi Sasaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3770644/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Superconductivity in two-dimensional CoO2 layers. Nature, 2003, 422, 53-55.	27.8	1,706
2	Synthesis, Anion Exchange, and Delamination of Coâ^'Al Layered Double Hydroxide:Â Assembly of the Exfoliated Nanosheet/Polyanion Composite Films and Magneto-Optical Studies. Journal of the American Chemical Society, 2006, 128, 4872-4880.	13.7	1,147
3	Twoâ€Dimensional Dielectric Nanosheets: Novel Nanoelectronics From Nanocrystal Building Blocks. Advanced Materials, 2012, 24, 210-228.	21.0	987
4	Nanosheets of Oxides and Hydroxides: Ultimate 2D Chargeâ€Bearing Functional Crystallites. Advanced Materials, 2010, 22, 5082-5104.	21.0	883
5	Macromolecule-like Aspects for a Colloidal Suspension of an Exfoliated Titanate. Pairwise Association of Nanosheets and Dynamic Reassembling Process Initiated from It. Journal of the American Chemical Society, 1996, 118, 8329-8335.	13.7	807
6	Redoxable Nanosheet Crystallites of MnO2Derived via Delamination of a Layered Manganese Oxide. Journal of the American Chemical Society, 2003, 125, 3568-3575.	13.7	656
7	Osmotic Swelling to Exfoliation. Exceptionally High Degrees of Hydration of a Layered Titanate. Journal of the American Chemical Society, 1998, 120, 4682-4689.	13.7	652
8	A Superlattice of Alternately Stacked Ni–Fe Hydroxide Nanosheets and Graphene for Efficient Splitting of Water. ACS Nano, 2015, 9, 1977-1984.	14.6	635
9	Selective and Controlled Synthesis of \hat{I}_{\pm} - and \hat{I}_{\pm} -Cobalt Hydroxides in Highly Developed Hexagonal Platelets. Journal of the American Chemical Society, 2005, 127, 13869-13874.	13.7	624
10	LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochemistry Communications, 2007, 9, 1486-1490.	4.7	620
11	Titanium Oxide Nanosheets: Graphene Analogues with Versatile Functionalities. Chemical Reviews, 2014, 114, 9455-9486.	47.7	557
12	Exfoliated oxide nanosheets: new solution to nanoelectronics. Journal of Materials Chemistry, 2009, 19, 2503.	6.7	543
13	Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nature Materials, 2015, 14, 1002-1007.	27.5	530
14	Electronic Band Structure of Titania Semiconductor Nanosheets Revealed by Electrochemical and Photoelectrochemical Studies. Journal of the American Chemical Society, 2004, 126, 5851-5858.	13.7	507
15	Positively Charged Nanosheets Derived via Total Delamination of Layered Double Hydroxides. Chemistry of Materials, 2005, 17, 4386-4391.	6.7	487
16	Organicâ€Baseâ€Driven Intercalation and Delamination for the Production of Functionalized Titanium Carbide Nanosheets with Superior Photothermal Therapeutic Performance. Angewandte Chemie - International Edition, 2016, 55, 14569-14574.	13.8	480
17	Exfoliating layered double hydroxides in formamide: a method to obtain positively charged nanosheets. Journal of Materials Chemistry, 2006, 16, 3809.	6.7	475
18	An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature, 2015, 517, 68-72.	27.8	440

#	Article	IF	CITATIONS
19	Two-Dimensional Oxide and Hydroxide Nanosheets: Controllable High-Quality Exfoliation, Molecular Assembly, and Exploration of Functionality. Accounts of Chemical Research, 2015, 48, 136-143.	15.6	425
20	Two dimensional and layered transition metal oxides. Applied Materials Today, 2016, 5, 73-89.	4.3	400
21	Layer-by-Layer Assembly of Titania Nanosheet/Polycation Composite Films. Chemistry of Materials, 2001, 13, 4661-4667.	6.7	355
22	Synthesis and Exfoliation of Co2+â^'Fe3+Layered Double Hydroxides:Â An Innovative Topochemical Approach. Journal of the American Chemical Society, 2007, 129, 5257-5263.	13.7	355
23	Nanotubes of lepidocrocite titanates. Chemical Physics Letters, 2003, 380, 577-582.	2.6	344
24	Topochemical Synthesis, Anion Exchange, and Exfoliation of Coâ^'Ni Layered Double Hydroxides: A Route to Positively Charged Coâ^'Ni Hydroxide Nanosheets with Tunable Composition. Chemistry of Materials, 2010, 22, 371-378.	6.7	323
25	Semiconductor Nanosheet Crystallites of Quasi-TiO2 and Their Optical Properties. Journal of Physical Chemistry B, 1997, 101, 10159-10161.	2.6	298
26	Interfacial modification for high-power solid-state lithium batteries. Solid State Ionics, 2008, 179, 1333-1337.	2.7	297
27	Structural Features of Titanate Nanotubes/Nanobelts Revealed by Raman, X-ray Absorption Fine Structure and Electron Diffraction Characterizations. Journal of Physical Chemistry B, 2005, 109, 6210-6214.	2.6	290
28	Layer-by-Layer Assembly and Spontaneous Flocculation of Oppositely Charged Oxide and Hydroxide Nanosheets into Inorganic Sandwich Layered Materials. Journal of the American Chemical Society, 2007, 129, 8000-8007.	13.7	288
29	Restacked Perovskite Nanosheets and Their Pt-Loaded Materials as Photocatalysts. Chemistry of Materials, 2002, 14, 4390-4395.	6.7	241
30	General Synthesis and Delamination of Highly Crystalline Transition-Metal-Bearing Layered Double Hydroxides. Langmuir, 2007, 23, 861-867.	3.5	238
31	General Synthesis and Structural Evolution of a Layered Family of Ln ₈ (OH) ₂₀ Cl ₄ · <i>n</i> H ₂ O (Ln = Nd, Sm, Eu, Gd, Tb,) Tj	ETQıqıl71 O	.78 ±3 44 rg8
32	Fabrication of Titanium Dioxide Thin Flakes and Their Porous Aggregate. Chemistry of Materials, 1997, 9, 602-608.	6.7	230
33	Oversized Titania Nanosheet Crystallites Derived from Flux-Grown Layered Titanate Single Crystals. Chemistry of Materials, 2003, 15, 3564-3568.	6.7	224
34	Preparation and Acid-Base Properties of a Protonated Titanate with the Lepidocrocite-like Layer Structure. Chemistry of Materials, 1995, 7, 1001-1007.	6.7	215
35	Topochemical Synthesis of Monometallic (Co ²⁺ –Co ³⁺) Layered Double Hydroxide and Its Exfoliation into Positively Charged Co(OH) ₂ Nanosheets. Angewandte Chemie - International Edition, 2008, 47, 86-89.	13.8	215
36	A Mixed Alkali Metal Titanate with the Lepidocrocite-like Layered Structure. Preparation, Crystal Structure, Protonic Form, and Acidâ `Base Intercalation Properties. Chemistry of Materials, 1998, 10, 4123-4128.	6.7	214

#	Article	IF	CITATIONS
37	Directly Rolling Nanosheets into Nanotubes. Journal of Physical Chemistry B, 2004, 108, 2115-2119.	2.6	212
38	A General Strategy to Layered Transitionâ€Metal Hydroxide Nanocones: Tuning the Composition for High Electrochemical Performance. Advanced Materials, 2012, 24, 2148-2153.	21.0	209
39	Two-Dimensional Diffraction of Molecular Nanosheet Crystallites of Titanium Oxide. Journal of Physical Chemistry B, 2001, 105, 6116-6121.	2.6	205
40	Topochemical Synthesis of Coâ^'Fe Layered Double Hydroxides at Varied Fe/Co Ratios: Unique Intercalation of Triiodide and Its Profound Effect. Journal of the American Chemical Society, 2011, 133, 613-620.	13.7	198
41	Fabrication of Controllable Ultrathin Hollow Shells by Layer-by-Layer Assembly of Exfoliated Titania Nanosheets on Polymer Templates. Chemistry of Materials, 2002, 14, 4827-4832.	6.7	192
42	Tetrahedral Co(II) Coordination in α-Type Cobalt Hydroxide: Rietveld Refinement and X-ray Absorption Spectroscopy. Inorganic Chemistry, 2006, 45, 3964-3969.	4.0	191
43	Interface Modulation of Two-Dimensional Superlattices for Efficient Overall Water Splitting. Nano Letters, 2019, 19, 4518-4526.	9.1	191
44	Layer-by-Layer Assembled Multilayer Films of Titanate Nanotubes, Ag- or Au-Loaded Nanotubes, and Nanotubes/Nanosheets with Polycations. Journal of the American Chemical Society, 2004, 126, 10382-10388.	13.7	190
45	Photocurrent Generation from Semiconducting Manganese Oxide Nanosheets in Response to Visible Light. Journal of Physical Chemistry B, 2005, 109, 9651-9655.	2.6	184
46	Anion-Exchangeable Layered Materials Based on Rare-Earth Phosphors: Unique Combination of Rare-Earth Host and Exchangeable Anions. Accounts of Chemical Research, 2010, 43, 1177-1185.	15.6	184
47	Unilamellar Metallic MoS ₂ /Graphene Superlattice for Efficient Sodium Storage and Hydrogen Evolution. ACS Energy Letters, 2018, 3, 997-1005.	17.4	184
48	Fabrication and Characterization of Multilayer Ultrathin Films of Exfoliated MnO2 Nanosheets and Polycations. Chemistry of Materials, 2003, 15, 2873-2878.	6.7	173
49	New Layered Rareâ€Earth Hydroxides with Anionâ€Exchange Properties. Chemistry - A European Journal, 2008, 14, 9255-9260.	3.3	173
50	Construction of Highly Ordered Lamellar Nanostructures through Langmuirâ^'Blodgett Deposition of Molecularly Thin Titania Nanosheets Tens of Micrometers Wide and Their Excellent Dielectric Properties. ACS Nano, 2009, 3, 1097-1106.	14.6	171
51	Organicâ€Baseâ€Driven Intercalation and Delamination for the Production of Functionalized Titanium Carbide Nanosheets with Superior Photothermal Therapeutic Performance. Angewandte Chemie, 2016, 128, 14789-14794.	2.0	167
52	Layered hydrous titanium dioxide: potassium ion exchange and structural characterization. Inorganic Chemistry, 1985, 24, 2265-2271.	4.0	162
53	Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte. Solid State Ionics, 2012, 225, 594-597.	2.7	161
54	Molecularâ€Scale Heteroassembly of Redoxable Hydroxide Nanosheets and Conductive Graphene into Superlattice Composites for Highâ€Performance Supercapacitors. Advanced Materials, 2014, 26, 4173-4178.	21.0	161

#	Article	IF	CITATIONS
55	Hollow nanoshell of layered double hydroxide. Chemical Communications, 2006, , 3125.	4.1	158
56	Single-layer nanosheets with exceptionally high and anisotropic hydroxyl ion conductivity. Science Advances, 2017, 3, e1602629.	10.3	154
57	First-Principles Study of Two-Dimensional Titanium Dioxides. Journal of Physical Chemistry B, 2003, 107, 9824-9828.	2.6	152
58	Flexible Lithium-Ion Fiber Battery by the Regular Stacking of Two-Dimensional Titanium Oxide Nanosheets Hybridized with Reduced Graphene Oxide. Nano Letters, 2017, 17, 3543-3549.	9.1	148
59	Synthesis and Delamination of Layered Manganese Oxide Nanobelts. Chemistry of Materials, 2007, 19, 6504-6512.	6.7	146
60	Segregative Crystallization of Several Diamond-like Phases from the Graphitic BC2N without an Additive at 7.7 GPa. Chemistry of Materials, 1994, 6, 2246-2251.	6.7	145
61	Fabrication of Densely Packed Titania Nanosheet Films on Solid Surface by Use of Langmuirâ^'Blodgett Deposition Method without Amphiphilic Additives. Langmuir, 2005, 21, 6590-6595.	3.5	144
62	Photocatalyst of Lamellar Aggregates of RuOx-Loaded Perovskite Nanosheets for Overall Water Splitting. Journal of Physical Chemistry B, 2005, 109, 17212-17216.	2.6	141
63	Robust High-κ Response in Molecularly Thin Perovskite Nanosheets. ACS Nano, 2010, 4, 5225-5232.	14.6	141
64	Engineered Interfaces of Artificial Perovskite Oxide Superlattices <i>via</i> Nanosheet Deposition Process. ACS Nano, 2010, 4, 6673-6680.	14.6	141
65	Titanium Dioxide Hollow Microspheres with an Extremely Thin Shell. Chemistry of Materials, 1998, 10, 3780-3782.	6.7	140
66	An Anisotropic Hydrogel Actuator Enabling Earthworm‣ike Directed Peristaltic Crawling. Angewandte Chemie - International Edition, 2018, 57, 15772-15776.	13.8	139
67	Factors affecting the crystal size of the MgAl-LDH (layered double hydroxide) prepared by using ammonia-releasing reagents. Applied Clay Science, 2007, 37, 23-31.	5.2	136
68	Fabrication of Nanostructured Functional Materials Using Exfoliated Nanosheets as a Building Block. Journal of the Ceramic Society of Japan, 2007, 115, 9-16.	1.3	134
69	Development of efficient electrocatalysts via molecular hybridization of NiMn layered double hydroxide nanosheets and graphene. Nanoscale, 2016, 8, 10425-10432.	5.6	134
70	Strain engineering of two-dimensional multilayered heterostructures for beyond-lithium-based rechargeable batteries. Nature Communications, 2020, 11, 3297.	12.8	134
71	Titania Nanostructured Films Derived from a Titania Nanosheet/Polycation Multilayer Assembly via Heat Treatment and UV Irradiation. Chemistry of Materials, 2002, 14, 3524-3530.	6.7	132
72	Synthesis of a Liâ^'Mn-oxide with Disordered Layer Stacking through Flocculation of Exfoliated MnO2Nanosheets, and Its Electrochemical Properties. Chemistry of Materials, 2003, 15, 4508-4514.	6.7	130

#	Article	IF	CITATIONS
73	Exfoliated Nanosheet Crystallite of Cesium Tungstate with 2D Pyrochlore Structure: Synthesis, Characterization, and Photochromic Properties. ACS Nano, 2008, 2, 1689-1695.	14.6	130
74	Oriented Monolayer Film of Gd ₂ O ₃ :0.05 Eu Crystallites: Quasiâ€Topotactic Transformation of the Hydroxide Film and Drastic Enhancement of Photoluminescence Properties. Angewandte Chemie - International Edition, 2009, 48, 3846-3849.	13.8	128
75	Water-Swellable MgAlâ^'LDH (Layered Double Hydroxide) Hybrids: Synthesis, Characterization, and Film Preparation. Langmuir, 2008, 24, 5591-5598.	3.5	127
76	Simultaneous crystallization of diamond and cubic boron nitride from the graphite relative boron carbide nitride (BC2N) under high pressure/high temperature conditions. Chemistry of Materials, 1993, 5, 695-699.	6.7	125
77	Gigantic Swelling of Inorganic Layered Materials: A Bridge to Molecularly Thin Two-Dimensional Nanosheets. Journal of the American Chemical Society, 2014, 136, 5491-5500.	13.7	125
78	2D Layered Double Hydroxide Nanosheets and Their Derivatives Toward Efficient Oxygen Evolution Reaction. Nano-Micro Letters, 2020, 12, 86.	27.0	124
79	General Insights into Structural Evolution of Layered Double Hydroxide: Underlying Aspects in Topochemical Transformation from Brucite to Layered Double Hydroxide. Journal of the American Chemical Society, 2012, 134, 19915-19921.	13.7	122
80	Genuine Unilamellar Metal Oxide Nanosheets Confined in a Superlattice-like Structure for Superior Energy Storage. ACS Nano, 2018, 12, 1768-1777.	14.6	122
81	Unusual Crystallization Behaviors of Anatase Nanocrystallites from a Molecularly Thin Titania Nanosheet and Its Stacked Forms:  Increase in Nucleation Temperature and Oriented Growth. Journal of the American Chemical Society, 2007, 129, 202-209.	13.7	121
82	Preparation and Characterization of the Eu ³⁺ Doped Perovskite Nanosheet Phosphor: La _{0.90} Eu _{0.05} Nb ₂ O ₇ . Chemistry of Materials, 2007, 19, 6575-6580.	6.7	120
83	Unusually stable ~100-fold reversible and instantaneous swelling of inorganic layered materials. Nature Communications, 2013, 4, 1632.	12.8	119
84	Chemical composition and crystal structure of superconducting sodium cobalt oxide bilayer-hydrateElectronic supplementary information (ESI) available: Rietveld refinement patterns. See http://www.rsc.org/suppdata/jm/b4/b400181h/. Journal of Materials Chemistry, 2004, 14, 1448.	6.7	117
85	2D Superlattices for Efficient Energy Storage and Conversion. Advanced Materials, 2020, 32, e1902654.	21.0	117
86	Multilayer ultrathin films of molecular titania nanosheets showing highly efficient UV-light absorption. Chemical Communications, 2000, , 2163-2164.	4.1	113
87	Osmotic Swelling of Layered Compounds as a Route to Producing High-Quality Two-Dimensional Materials. A Comparative Study of Tetramethylammonium versus Tetrabutylammonium Cation in a Lepidocrocite-type Titanate. Chemistry of Materials, 2013, 25, 3137-3146.	6.7	111
88	Two-Dimensional Unilamellar Cation-Deficient Metal Oxide Nanosheet Superlattices for High-Rate Sodium Ion Energy Storage. ACS Nano, 2018, 12, 12337-12346.	14.6	111
89	Synthesis and Properties of Well-Crystallized Layered Rare-Earth Hydroxide Nitrates from Homogeneous Precipitation. Inorganic Chemistry, 2009, 48, 6724-6730.	4.0	110
90	Ln ₂ (OH) ₄ SO ₄ · <i>n</i> H ₂ O (Ln = Pr to Tb; <i>n</i> â^1⁄4 2): A New Family of Layered Rare-Earth Hydroxides Rigidly Pillared by Sulfate Ions. Chemistry of Materials, 2010, 22, 6001-6007.	6.7	104

#	Article	IF	CITATIONS
91	Analysis of the structure and degree of crystallisation of 70Li ₂ S–30P ₂ S ₅ glass ceramic. Journal of Materials Chemistry A, 2015, 3, 2756-2761.	10.3	100
92	Self-Assembled Multilayers of Titania Nanoparticles and Nanosheets with Polyelectrolytes. Chemistry of Materials, 2003, 15, 807-812.	6.7	99
93	Colloidal Unilamellar Layers of Tantalum Oxide with Open Channels. Inorganic Chemistry, 2007, 46, 4787-4789.	4.0	99
94	Photocatalytic properties of titania nanostructured films fabricated from titania nanosheets. Physical Chemistry Chemical Physics, 2007, 9, 2413.	2.8	98
95	Exfoliation of Layered Europium Hydroxide into Unilamellar Nanosheets. Chemistry - an Asian Journal, 2010, 5, 248-251.	3.3	96
96	Preparation of highly oriented organic–LDH hybrid films by combining the decarbonation, anion-exchange, and delamination processes. Journal of Materials Chemistry, 2006, 16, 1608-1616.	6.7	95
97	Highly efficient quasi-static water desalination using monolayer graphene oxide/titania hybrid laminates. NPG Asia Materials, 2015, 7, e162-e162.	7.9	94
98	Protonated pentatitanate: preparation, characterizations and cation intercalation. Chemistry of Materials, 1992, 4, 894-899.	6.7	92
99	Inorganic Multilayer Films of Manganese Oxide Nanosheets and Aluminum Polyoxocations: Fabrication, Structure, and Electrochemical Behavior. Chemistry of Materials, 2005, 17, 1352-1357.	6.7	92
100	Synthesis and characterization of water-swellable LDH (layered double hydroxide) hybrids containing sulfonate-type intercalant. Journal of Materials Chemistry, 2011, 21, 8085.	6.7	92
101	Multilayer Hybrid Films of Titania Semiconductor Nanosheet and Silver Metal Fabricated via Layer-by-Layer Self-Assembly and Subsequent UV Irradiation. Chemistry of Materials, 2006, 18, 1235-1239.	6.7	86
102	Layered Cobalt Hydroxide Nanocones: Microwaveâ€Assisted Synthesis, Exfoliation, and Structural Modification. Angewandte Chemie - International Edition, 2010, 49, 8253-8256.	13.8	86
103	Photolatently modulable hydrogels using unilamellar titania nanosheets as photocatalytic crosslinkers. Nature Communications, 2013, 4, 2029.	12.8	85
104	Ultrathin Films and Hollow Shells with Pillared Architectures Fabricated via Layer-by-Layer Self-Assembly of Titania Nanosheets and Aluminum Keggin Ions. Journal of Physical Chemistry B, 2004, 108, 4283-4288.	2.6	83
105	Synthesis of phosphorous sulfide solid electrolyte and all-solid-state lithium batteries with graphite electrode. Solid State Ionics, 2005, 176, 2389-2393.	2.7	83
106	Photonic water dynamically responsive to external stimuli. Nature Communications, 2016, 7, 12559.	12.8	83
107	Photoelectrochemical Properties of Alternating Multilayer Films Composed of Titania Nanosheets and Zn Porphyrin. Langmuir, 2007, 23, 6730-6736.	3.5	82
108	All-Nanosheet Ultrathin Capacitors Assembled Layer-by-Layer <i>via</i> Solution-Based Processes. ACS Nano, 2014, 8, 2658-2666.	14.6	82

#	Article	IF	CITATIONS
109	Intercalation of Pyridine in Layered Titanates. Chemistry of Materials, 1996, 8, 777-782.	6.7	80
110	Decarbonation of MgAl-LDHs (layered double hydroxides) using acetate–buffer/NaCl mixed solution. Journal of Colloid and Interface Science, 2008, 322, 237-245.	9.4	80
111	Redox Active Cation Intercalation/Deintercalation in Two-Dimensional Layered MnO ₂ Nanostructures for High-Rate Electrochemical Energy Storage. ACS Applied Materials & Interfaces, 2017, 9, 6282-6291.	8.0	80
112	Synthesis of a Solid Solution Series of Layered Eu _{<i>x</i>} Gd _{1â[^]<i>x</i>} (OH) _{2.5} Cl _{0.5} ·0.9H ₂ Cl and Its Transformation into (Eu _{<i>x</i>} Gd _{1â[^]<i>x</i>}) ₂ O ₃ with Enhanced Photolumingscence Properties Inorganic Chemistry 2010 49, 2960-2968) 4.0	78
113	Electrochromic Films Composed of MnO[sub 2] Nanosheets with Controlled Optical Density and High Coloration Efficiency. Journal of the Electrochemical Society, 2005, 152, E384.	2.9	77
114	Synthesis and In Situ X-ray Diffraction Characterization of Two-Dimensional Perovskite-Type Oxide Colloids with a Controlled Molecular Thickness. Chemistry of Materials, 2012, 24, 4201-4208.	6.7	76
115	High‥ield Preparation, Versatile Structural Modification, and Properties of Layered Cobalt Hydroxide Nanocones. Advanced Functional Materials, 2014, 24, 4292-4302.	14.9	75
116	Layer-by-Layer Assembly of TaO ₃ Nanosheet/Polycation Composite Nanostructures: Multilayer Film, Hollow Sphere, and Its Photocatalytic Activity for Hydrogen Evolution. Chemistry of Materials, 2010, 22, 2582-2587.	6.7	74
117	Electronic Band Structure of Exfoliated Titanium- and/or Niobium-Based Oxide Nanosheets Probed by Electrochemical and Photoelectrochemical Measurements. Journal of Physical Chemistry C, 2012, 116, 12426-12433.	3.1	74
118	Layer-by-Layer Assembled TiO2Nanoparticle/PEDOT-PSS Composite Films for Switching of Electric Conductivity in Response to Ultraviolet and Visible Light. Chemistry of Materials, 2006, 18, 3596-3598.	6.7	73
119	Tuning the Surface Charge of 2D Oxide Nanosheets and the Bulk-Scale Production of Superlatticelike Composites. Journal of the American Chemical Society, 2015, 137, 2844-2847.	13.7	73
120	All solid state Li-ion secondary battery with FeS anode. Solid State Ionics, 2005, 176, 2383-2387.	2.7	72
121	Controlled Polarizability of Oneâ€Nanometerâ€Thick Oxide Nanosheets for Tailored, Highâ€ <i>κ</i> Nanodielectrics. Advanced Functional Materials, 2011, 21, 3482-3487.	14.9	72
122	Preparation and characterizations of Fe- or Ni-substituted titania nanosheets as photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 273-276.	3.9	70
123	Unconventional upper- and lower-critical fields and normal-state magnetic susceptibility of the superconducting compoundNa0.35CoO2a‹1.3H2O. Physical Review B, 2003, 68, .	3.2	70
124	Recent progress in functionalized layered double hydroxides and their application in efficient electrocatalytic water oxidation. Journal of Energy Chemistry, 2019, 32, 93-104.	12.9	70
125	Deintercalation of carbonate ions from carbonate-type layered double hydroxides (LDHs) using acid–alcohol mixed solutions. Applied Clay Science, 2011, 54, 132-137.	5.2	69
126	Titanoniobate and niobate nanosheet photocatalysts: superior photoinduced hydrophilicity and enhanced thermal stability of unilamellar Nb ₃ O ₈ nanosheet. Energy and Environmental Science, 2011, 4, 535-542.	30.8	68

#	Article	IF	CITATIONS
127	Hetero-nanostructured Films of Titanium and Manganese Oxide Nanosheets:  Photoinduced Charge Transfer and Electrochemical Properties. Journal of Physical Chemistry C, 2008, 112, 5197-5202.	3.1	67
128	Photoinduced Hydrophilic Conversion Properties of Titania Nanosheets. Journal of Physical Chemistry B, 2006, 110, 6198-6203.	2.6	66
129	Intrinsic high water/ion selectivity of graphene oxide lamellar membranes in concentration gradient-driven diffusion. Chemical Science, 2016, 7, 6988-6994.	7.4	66
130	The rise of 2D dielectrics/ferroelectrics. APL Materials, 2019, 7, .	5.1	66
131	Tantalum oxide nanomesh as self-standing one nanometre thick electrolyte. Energy and Environmental Science, 2011, 4, 3509.	30.8	64
132	Polymeric Micelle Assembly with Inorganic Nanosheets for Construction of Mesoporous Architectures with Crystallized Walls. Angewandte Chemie - International Edition, 2015, 54, 4222-4225.	13.8	64
133	Two-dimensional organic–inorganic superlattice-like heterostructures for energy storage applications. Energy and Environmental Science, 2020, 13, 4834-4853.	30.8	64
134	Photoluminescence properties of lamellar aggregates of titania nanosheets accommodating rare earth ions. Applied Physics Letters, 2004, 85, 4187-4189.	3.3	63
135	Synthesis of Mn-Substituted Titania Nanosheets and Ferromagnetic Thin Films with Controlled Doping. Chemistry of Materials, 2009, 21, 4366-4373.	6.7	63
136	Self-Organized Core–Shell Structure for High-Power Electrode in Solid-State Lithium Batteries. Chemistry of Materials, 2011, 23, 3798-3804.	6.7	63
137	Neat monolayer tiling of molecularly thin two-dimensional materials in 1 min. Science Advances, 2017, 3, e1700414.	10.3	63
138	Direct Z-scheme construction of g-C3N4 quantum dots / TiO2 nanoflakes for efficient photocatalysis. Chemical Engineering Journal, 2022, 430, 132861.	12.7	63
139	Nanoarchitecture of Semiconductor Titania Nanosheets Revealed by Polarization-Dependent Total Reflection Fluorescence X-ray Absorption Fine Structure. Journal of Physical Chemistry B, 2004, 108, 13088-13092.	2.6	62
140	RbBiNb ₂ O ₇ : A New Lead-Free High- <i>T</i> _c Ferroelectric. Chemistry of Materials, 2012, 24, 3111-3113.	6.7	60
141	Processing and Photocatalytic Properties of Transparent 12 Tungsto(VI) Phosphoric Acidâ^'TiO2 Hybrid Films. Chemistry of Materials, 2008, 20, 3757-3764.	6.7	59
142	Photocatalytic Decomposition of an Alkylammonium Cation in a Langmuirâ^Blodgett Film of a Titania Nanosheet. Langmuir, 2006, 22, 3870-3877.	3.5	58
143	Versatile van der Waals epitaxy-like growth of crystal films using two-dimensional nanosheets as a seed layer: orientation tuning of SrTiO3 films along three important axes on glass substrates. Journal of Materials Chemistry C, 2014, 2, 441-449.	5.5	58
144	Possible unconventional superconductivity inNaxCoO2·yH2Oprobed by muon spin rotation and relaxation. Physical Review B, 2004, 70, .	3.2	57

49

#	Article	IF	CITATIONS
145	The effects of extra Li content, synthesis method, sintering temperature on synthesis and electrochemistry of layered LiNi1/3Mn1/3Co1/3O2. Journal of Power Sources, 2006, 162, 629-635.	7.8	57
146	Rare Cobalt-Based Phosphate Nanoribbons with Unique 5-Coordination for Electrocatalytic Water Oxidation. ACS Energy Letters, 2018, 3, 1254-1260.	17.4	57
147	Atomic-scale regulation of anionic and cationic migration in alkali metal batteries. Nature Communications, 2021, 12, 4184.	12.8	57
148	Structural difference between a superconducting sodium cobalt oxide and its related phase. Journal of Solid State Chemistry, 2004, 177, 372-376.	2.9	56
149	Highly selective charge-guided ion transport through a hybrid membrane consisting of anionic graphene oxide and cationic hydroxide nanosheet superlattice units. NPG Asia Materials, 2016, 8, e259-e259.	7.9	56
150	Low-temperature synthesis and investigation into the formation mechanism of high quality Ni-Fe layered double hydroxides hexagonal platelets. Scientific Reports, 2018, 8, 4179.	3.3	56
151	Atomic Layer Engineering of High-κ Ferroelectricity in 2D Perovskites. Journal of the American Chemical Society, 2017, 139, 10868-10874.	13.7	55
152	Atomic structure of titania nanosheet with vacancies. Scientific Reports, 2013, 3, 2801.	3.3	53
153	Sizeâ€Independent Fast Ion Intercalation in Twoâ€Dimensional Titania Nanosheets for Alkaliâ€Metalâ€Ion Batteries. Angewandte Chemie - International Edition, 2019, 58, 8740-8745.	13.8	53
154	Recent advances in developing high-performance nanostructured electrocatalysts based on 3d transition metal elements. Nanoscale Horizons, 2019, 4, 789-808.	8.0	53
155	Weak Magnetic Order in Bilayered-Hydrate NaxCoO2·yH2O Structure Probed by Co Nuclear Quadrupole Resonance –Proposed Phase Diagram in Superconducting NaxCoO2·yH2O–. Journal of the Physical Society of Japan, 2005, 74, 867-870.	1.6	52
156	Eu _{0.56} Ta ₂ O ₇ :  A New Nanosheet Phosphor with the High Intrananosheet Site Photoactivator Concentration. Journal of Physical Chemistry C, 2008, 112, 1312-1315.	3.1	52
157	Layer-by-layer assembly of gold nanoparticles with titania nanosheets: control of plasmon resonance and photovoltaic properties. Journal of Materials Chemistry, 2010, 20, 4371.	6.7	52
158	2D Perovskite Nanosheets with Thermally-Stable High-κ Response: A New Platform for High-Temperature Capacitors. ACS Applied Materials & Interfaces, 2014, 6, 19510-19514.	8.0	50
159	Spontaneous Direct Band Gap, High Hole Mobility, and Huge Exciton Energy in Atomic-Thin TiO ₂ Nanosheet. Chemistry of Materials, 2018, 30, 6449-6457.	6.7	50
160	Preparation of protonic layered manganates and their intercalation behavior. Solid State Ionics, 2002, 151, 243-250.	2.7	49
161	Deintercalation of carbonate ions and anion exchange of an Al-rich MgAl-LDH (layered double) Tj ETQq1 1 0.784	314 rgBT /	Overlock 10

162High Thermal Robustness of Molecularly Thin Perovskite Nanosheets and Implications for Superior
Dielectric Properties. ACS Nano, 2014, 8, 5449-5461.14.6

#	Article	IF	CITATIONS
163	Structure Analysis of Exfoliated Unilamellar Crystallites of Manganese Oxide Nanosheets. Journal of Physical Chemistry B, 2006, 110, 17070-17075.	2.6	48
164	Preparation and Characterization of Self-Cleaning Glass for Vehicle with Niobia Nanosheets. ACS Applied Materials & Interfaces, 2010, 2, 1236-1241.	8.0	48
165	Soft-Chemical Exfoliation of Na _{0.9} Mo ₂ O ₄ : Preparation and Electrical Conductivity Characterization of a Molybdenum Oxide Nanosheet. Chemistry of Materials, 2011, 23, 2700-2702.	6.7	48
166	Lithium ion conductive oxysulfide, Li3PO4–Li3PS4. Solid State Ionics, 2005, 176, 2355-2359.	2.7	47
167	(K _{1.5} Eu _{0.5})Ta ₃ O ₁₀ : A Far-Red Luminescent Nanosheet Phosphor with the Double Perovskite Structure. Journal of Physical Chemistry C, 2008, 112, 17115-17120.	3.1	47
168	CoNiFe Layered Double Hydroxide/RuO _{2.1} Nanosheet Superlattice as Carbon-Free Electrocatalysts for Water Splitting and Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2020, 12, 33083-33093.	8.0	47
169	Gigantic magneto-optical effects induced by (Feâ^•Co)-cosubstitution in titania nanosheets. Applied Physics Letters, 2008, 92, 253110.	3.3	46
170	Selfâ€Assembly Atomic Stacking Transport Layer of 2D Layered Titania for Perovskite Solar Cells with Extended UV Stability. Advanced Energy Materials, 2018, 8, 1701722.	19.5	46
171	Electrochemical and ex situ XRD investigations on (1â^'x)LiNiO2·xLi2TiO3 (0.05â‰ ¤ â‰ 9 .5). Electrochimica Acta, 2004, 49, 3305-3311.	5.2	45
172	Coexistence of Magnetic Order and Ferroelectricity at 2D Nanosheet Interfaces. Journal of the American Chemical Society, 2016, 138, 7621-7625.	13.7	45
173	Phase Diagram of Superconducting NaxCoO2·yH2O. Journal of the Physical Society of Japan, 2005, 74, 2909-2912.	1.6	44
174	Highly Swollen Layered Nickel Oxide with a Trilayer Hydrate Structure. Chemistry of Materials, 2008, 20, 479-485.	6.7	44
175	Orbital Reconstruction and Interface Ferromagnetism in Self-Assembled Nanosheet Superlattices. ACS Nano, 2011, 5, 6871-6879.	14.6	44
176	Recent progress on exploring exceptionally high and anisotropic H ⁺ /OH ^{â^'} ion conduction in two-dimensional materials. Chemical Science, 2018, 9, 33-43.	7.4	44
177	Synthesis of (1â^'2x)LiNi1/2Mn1/2O2·xLi[Li1/3Mn2/3]O2·xLiCoO2 (0≤â‰ 8 .5) electrode materials and comparative study on cooling rate. Journal of Power Sources, 2005, 146, 598-601.	7.8	43
178	Fabrication of Ruthenium Metal Nanosheets via Topotactic Metallization of Exfoliated Ruthenate Nanosheets. Inorganic Chemistry, 2013, 52, 2280-2282.	4.0	43
179	Thermally Stable Luminescent Composites Fabricated by Confining Rare Earth Complexes in the Two-Dimensional Gallery of Titania Nanosheets and Their Photophysical Properties. Journal of Physical Chemistry B, 2006, 110, 9863-9868.	2.6	42
180	Self-Assembled Nanofilm of Monodisperse Cobalt Hydroxide Hexagonal Platelets: Topotactic Conversion into Oxide and Resistive Switching. Chemistry of Materials, 2010, 22, 6341-6346.	6.7	42

#	Article	IF	CITATIONS
181	Nanoarchitectonics in dielectric/ferroelectric layered perovskites: from bulk 3D systems to 2D nanosheets. Dalton Transactions, 2018, 47, 2841-2851.	3.3	42
182	Controlled doping of semiconducting titania nanosheets for tailored spinelectronic materials. Nanoscale, 2014, 6, 14227-14236.	5.6	41
183	Nanosheet architectonics: a hierarchically structured assembly for tailored fusion materials. Polymer Journal, 2015, 47, 89-98.	2.7	40
184	Synthesis, Structural Characterizations, and Some Chemical Properties of a Fibrous Titanate with a Novel Layer/Tunnel Intergrown Structure. Chemistry of Materials, 1994, 6, 1749-1756.	6.7	39
185	Valence and Na content dependences of superconductivity inNaxCoO2â^™yH2O. Physical Review B, 2006, 74, .	3.2	39
186	Well-defined crystallites autoclaved from the nitrate/NH4OH reaction system as the precursor for (Y,Eu)2O3 red phosphor: Crystallization mechanism, phase and morphology control, and luminescent property. Journal of Solid State Chemistry, 2012, 192, 229-237.	2.9	39
187	Liquid Phase Exfoliation of MoS ₂ Assisted by Formamide Solvothermal Treatment and Enhanced Electrocatalytic Activity Based on (H ₃ Mo ₁₂ O ₄₀ P/MoS ₂) _n Multilayer Structure, ACS Sustainable Chemistry and Engineering, 2018, 6, 5227-5237.	6.7	39
188	Electrochemical and photoelectrochemical study on exfoliated Nb3O8 nanosheet. Journal of Physics and Chemistry of Solids, 2008, 69, 1288-1291.	4.0	37
189	Liquid dispersions of zeolite monolayers with high catalytic activity prepared by soft-chemical exfoliation. Science Advances, 2020, 6, eaay8163.	10.3	37
190	Construction of a push–pull system in g-C ₃ N ₄ for efficient photocatalytic hydrogen evolution under visible light. Journal of Materials Chemistry A, 2020, 8, 13299-13310.	10.3	37
191	Organization of Artificial Superlattices Utilizing Nanosheets as a Building Block and Exploration of Their Advanced Functions. Annual Review of Materials Research, 2015, 45, 111-127.	9.3	36
192	Accordion-like swelling of layered perovskite crystals via massive permeation of aqueous solutions into 2D oxide galleries. Chemical Communications, 2015, 51, 17068-17071.	4.1	35
193	Stability and Nature of Chemically Exfoliated MoS ₂ in Aqueous Suspensions. Inorganic Chemistry, 2017, 56, 7620-7623.	4.0	35
194	Two-dimensional porous cuprous oxide nanoplatelets derived from metal–organic frameworks (MOFs) for efficient photocatalytic dye degradation under visible light. Dalton Transactions, 2018, 47, 7694-7700.	3.3	35
195	Photochromogenic Nanosheet Crystallites of Tungstate with a 2D Bronze Structure. Inorganic Chemistry, 2012, 51, 1540-1543.	4.0	34
196	Progress and perspective on two-dimensional unilamellar metal oxide nanosheets and tailored nanostructures from them for electrochemical energy storage. Energy Storage Materials, 2019, 19, 281-298.	18.0	34
197	Structural Study of a Series of Layered Rare-Earth Hydroxide Sulfates. Inorganic Chemistry, 2011, 50, 6667-6672.	4.0	33
198	Layered (1â^²xâ^²y)LiNi[sub 1/2]Mn[sub 1/2]O[sub 2]â‹xLi[Li[sub 1/3]Mn[sub 2/3]] O[sub 2]â‹yLiCoO[sub 2] (0â‰ ¤ =yâ‰ 0 .3 and x+y=0.5) Cathode Materials. Journal of the Electrochemical Society, 2005, 152, A171.	2.9	32

12

#	Article	IF	CITATIONS
199	Macroscopic and Strong Ribbons of Functionality-Rich Metal Oxides from Highly Ordered Assembly of Unilamellar Sheets. Journal of the American Chemical Society, 2015, 137, 13200-13208.	13.7	32
200	Synthesis and Substitution Chemistry of Redox-Active Manganese/Cobalt Oxide Nanosheets. Chemistry of Materials, 2018, 30, 1517-1523.	6.7	31
201	Molecular nanosheets of quasi-TiO2: preparation and spontaneous reassembling. Supramolecular Science, 1998, 5, 367-371.	0.7	30
202	Novel Crystal Growth from a Two-Dimensionally Bound Nanoscopic System. Formation of Oriented Anatase Nanocrystals from Titania Nanosheets. Crystal Growth and Design, 2003, 3, 281-283.	3.0	30
203	Combinatorial approach for powder preparation of pseudo-ternary system LiO0.5–X–TiO2 (X: FeO1.5,) Tj ET	Qq1_1 0.7	84314 rgB
204	Characterization of Sodium Cobalt Oxides Related to P3-Phase Superconductor. Chemistry of Materials, 2005, 17, 2034-2040.	6.7	30
205	Langmuir–Blodgett Fabrication of Nanosheet-Based Dielectric Films without an Interfacial Dead Layer. Japanese Journal of Applied Physics, 2008, 47, 7556.	1.5	30
206	Extra‣arge Mechanical Anisotropy of a Hydrogel with Maximized Electrostatic Repulsion between Cofacially Aligned 2D Electrolytes. Angewandte Chemie - International Edition, 2018, 57, 12508-12513.	13.8	30
207	<i>In situ</i> growth of metallic Ag ^O intercalated CoAl layered double hydroxides as efficient electrocatalysts for the oxygen reduction reaction in alkaline solutions. Dalton Transactions, 2019, 48, 1084-1094.	3.3	30
208	Na+/H+Ion-exchange Process on Layered Hydrous Titanium Dioxide. Bulletin of the Chemical Society of Japan, 1985, 58, 3500-3505.	3.2	29
209	Rubidium(1+) and cesium(1+) incorporation mechanism and hydrate structures of layered hydrous titanium dioxide. Inorganic Chemistry, 1989, 28, 2776-2779.	4.0	29
210	A mechanically adaptive hydrogel with a reconfigurable network consisting entirely of inorganic nanosheets and water. Nature Communications, 2020, 11, 6026.	12.8	29
211	Single Droplet Assembly for Two-Dimensional Nanosheet Tiling. ACS Nano, 2020, 14, 15216-15226.	14.6	29
212	On/Off Boundary of Photocatalytic Activity between Single- and Bilayer MoS ₂ . ACS Nano, 2020, 14, 6663-6672.	14.6	29
213	Molecular-Scale Manipulation of Layer Sequence in Heteroassembled Nanosheet Films toward Oxygen Evolution Electrocatalysts. ACS Nano, 2022, 16, 4028-4040.	14.6	29
214	Characterizations of several cubic phases directly transformed from the graphitic BC2N. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 209, 26-29.	5.6	28
215	Preparation and photocatalytic activity of Keggin-ion tungstate and TiO2 hybrid layer-by-layer film composites. Applied Catalysis A: General, 2009, 366, 148-153.	4.3	28
216	Well-Controlled Crystal Growth of Zinc Oxide Films on Plastics at Room Temperature Using 2D Nanosheet Seed Layer. Journal of Physical Chemistry C, 2009, 113, 19096-19101.	3.1	28

#	Article	IF	CITATIONS
217	<i>A</i> ―and <i>B</i> ‣ite Modified Perovskite Nanosheets and Their Integrations into Highâ€ <i>k</i> Dielectric Thin Films. International Journal of Applied Ceramic Technology, 2012, 9, 29-36.	2.1	28
218	Layered zinc hydroxide nanocones: synthesis, facile morphological and structural modification, and properties. Nanoscale, 2014, 6, 13870-13875.	5.6	28
219	Accelerated Ionic and Charge Transfer through Atomic Interfacial Electric Fields for Superior Sodium Storage. ACS Nano, 2022, 16, 4775-4785.	14.6	28
220	Synthesis and characterization of fibrous octatitanate M2Ti8O17 (M = K, Rb). Journal of Solid State Chemistry, 1989, 83, 45-51.	2.9	26
221	Enhancement of Host Excitation-Mediated Photoluminescence and Preferential Quenching of Direct Photoactivator Excitation-Mediated Photoluminescence by Exfoliation of Layered KLa0.90Sm0.05Nb2O7into La0.90Sm0.05Nb2O7Nanosheets. Journal of Physical Chemistry C, 2009, 113, 8735-8742.	3.1	26
222	Impact of perovskite layer stacking on dielectric responses in KCa2Nanâ^'3NbnO3n+1â€^(n=3–6) Dion–Jacobson homologous series. Applied Physics Letters, 2010, 96, .	3.3	26
223	Synthesis of Co(II)-Fe(III) Hydroxide Nanocones with Mixed Octahedral/Tetrahedral Coordination toward Efficient Electrocatalysis. Chemistry of Materials, 2020, 32, 4232-4240.	6.7	26
224	Fabrication of Anatase Thin Film with Perfect <i>c</i> -Axis Orientation on Glass Substrate Promoted by a Two-Dimensional Perovskite Nanosheet Seed Layer. Crystal Growth and Design, 2010, 10, 3787-3793.	3.0	25
225	Synthesis and Atomic Characterization of a Ti ₂ O ₃ Nanosheet. Journal of Physical Chemistry Letters, 2011, 2, 1820-1823.	4.6	25
226	Superlattice assembly of graphene oxide (GO) and titania nanosheets: fabrication, in situ photocatalytic reduction of GO and highly improved carrier transport. Nanoscale, 2014, 6, 14419-14427.	5.6	25
227	Atomically resolved structure of ligand-protected Au9 clusters on TiO2 nanosheets using aberration-corrected STEM. Journal of Chemical Physics, 2016, 144, 114703.	3.0	25
228	Two-Dimensional Molecular Sheets of Transition Metal Oxides toward Wearable Energy Storage. Accounts of Chemical Research, 2020, 53, 2443-2455.	15.6	25
229	Surface-Modified Two-Dimensional Titanium Carbide Sheets for Intrinsic Vibrational Signal-Retained Surface-Enhanced Raman Scattering with Ultrahigh Uniformity. ACS Applied Materials & Interfaces, 2020, 12, 23523-23531.	8.0	25
230	Microporosity and Acidity Properties of Alumina Pillared Titanates. Langmuir, 1999, 15, 1090-1095.	3.5	24
231	Lateral Solid-Phase Epitaxy of Oxide Thin Films on Glass Substrate Seeded with Oxide Nanosheets. ACS Nano, 2014, 8, 6145-6150.	14.6	24
232	Synthesis and characterization of a new mesoporous alumina-pillared titanate with a double-layer arrangement structure. Journal of Materials Chemistry, 2000, 10, 497-501.	6.7	23
233	Combinatorial electrode array for high-throughput evaluation of combinatorial library for electrode materials. Applied Surface Science, 2004, 223, 210-213.	6.1	23
234	170 NMR Measurements on Superconducting Na0.35CoO2·yH2O. Journal of the Physical Society of Japan, 2005, 74, 2177-2180.	1.6	23

#	Article	IF	CITATIONS
235	Efficient Photoinduced Charge Accumulation in Reduced Graphene Oxide Coupled with Titania Nanosheets To Show Highly Enhanced and Persistent Conductance. ACS Applied Materials & Interfaces, 2015, 7, 11436-11443.	8.0	23
236	Hunting for Monolayer Oxide Nanosheets and Their Architectures. Scientific Reports, 2016, 6, 19402.	3.3	23
237	Solid electrolyte, thio-LISICON, thin film prepared by pulsed laser deposition. Journal of Power Sources, 2005, 146, 707-710.	7.8	22
238	Anisotropic Behavior of Knight Shift in Superconducting State of NaxCoO2·yH2O. Journal of the Physical Society of Japan, 2006, 75, 013708.	1.6	22
239	Lithium silicon sulfide as an anode material in all-solid-state lithium batteries. Journal of Power Sources, 2010, 195, 3323-3327.	7.8	22
240	Reversible Switching of the Magnetic Orientation of Titanate Nanosheets by Photochemical Reduction and Autoxidation. Journal of the American Chemical Society, 2018, 140, 16396-16401.	13.7	22
241	Superionic conduction along ordered hydroxyl networks in molecular-thin nanosheets. Materials Horizons, 2019, 6, 2087-2093.	12.2	22
242	Giant two-dimensional titania sheets for constructing a flexible fiber sodium-ion battery with long-term cycling stability. Energy Storage Materials, 2020, 24, 504-511.	18.0	22
243	Three-in-one cathode host based on Nb ₃ O ₈ /graphene superlattice heterostructures for high-performance Li–S batteries. Journal of Materials Chemistry A, 2021, 9, 9952-9960.	10.3	22
244	Humidity-Sensitive Electrical Conductivity of a Langmuirâ^'Blodgett Film of Titania Nanosheets:Â Surface Modification as Induced by Light Irradiation under Humid Conditions. Langmuir, 2006, 22, 10066-10071.	3.5	21
245	ION-EXCHANGE PROPERTIES OF HYDROUS TITANIUM DIOXIDE WITH A FIBROUS FORM OBTAINED FROM POTASSIUM DITITANATE. Solvent Extraction and Ion Exchange, 1983, 1, 775-790.	2.0	20
246	Modulation of Photochemical Activity of Titania Nanosheets via Heteroassembly with Reduced Graphene Oxide. Enhancement of Photoinduced Hydrophilic Conversion Properties. Journal of Physical Chemistry C, 2016, 120, 23944-23950.	3.1	20
247	Anisotropic fluoride nanocrystals modulated by facet-specific passivation and their disordered surfaces. National Science Review, 2020, 7, 841-848.	9.5	20
248	Synthesis and electrochemistry of new layered (1â^'x)LiVO2·xLi2TiO3 (0â‰ ¤ â‰ 9 .6) electrode materials. Journal of Power Sources, 2007, 174, 1007-1011.	7.8	19
249	Effect of KBr on the FTIR Spectra of NO3â^'LDHs (Layered Double Hydroxides). Chemistry Letters, 2009, 38, 808-809.	1.3	19
250	The formation of graphene–titania hybrid films and their resistance change under ultraviolet irradiation. Carbon, 2012, 50, 4518-4523.	10.3	19
251	Tetrabutylphosphonium ions as a new swelling/delamination agent for layered compounds. Chemical Communications, 2014, 50, 9977.	4.1	19
252	Bulk Functional Materials Design Using Oxide Nanosheets as Building Blocks: A New Upconversion Material Fabricated by Flocculation of Ca ₂ Nb ₃ O ₁₀ [–] Nanosheets with Rare-Earth Ions. Journal of Physical Chemistry C, 2014, 118, 1729-1738.	3.1	19

#	Article	IF	CITATIONS
253	Aqueous Formateâ€Based Li O ₂ Battery with Low Charge Overpotential and High Working Voltage. Advanced Energy Materials, 2021, 11, 2101630.	19.5	19
254	Ion-exchange equilibrium of alkali metal ions between crystalline hydrous titanium dioxide fibers and aqueous solutions Bunseki Kagaku, 1982, 31, E225-E229.	0.2	18
255	Photoinduced structural changes of cationic azo dyes confined in a two dimensional nanospace by two different mechanisms. RSC Advances, 2017, 7, 8077-8081.	3.6	18
256	Exfoliated Ferrierite-Related Unilamellar Nanosheets in Solution and Their Use for Preparation of Mixed Zeolite Hierarchical Structures. Journal of the American Chemical Society, 2021, 143, 11052-11062.	13.7	18
257	Adsorption of Cobalt(II) Ions on Crystalline Hydrous Titanium Dioxide Fibers at 298 to 423 K. Bulletin of the Chemical Society of Japan, 1986, 59, 49-52.	3.2	17
258	Inorganic Multilayer Assembly of Titania Semiconductor Nanosheets and Ru Complexes. Langmuir, 2003, 19, 9534-9537.	3.5	17
259	Synthesis and electrochemistry of layered 0.6LiNi0.5Mn0.5O2·xLi2MnO3·yLiCoO2 (x+y=0.4) cathode materials. Materials Letters, 2004, 58, 3197-3200.	2.6	17
260	Synthesis and soft-chemical reactivity of layered potassium cobalt oxide. Solid State Ionics, 2005, 176, 2367-2370.	2.7	17
261	An Alkali-Metal Ion Extracted Layered Compound as a Template for a Metastable Phase Synthesis in a Low-Temperature Solid-State Reaction: Preparation of Brookite from K _{0.8} Ti _{1.73} Li _{0.27} O ₄ . Inorganic Chemistry, 2010, 49, 3044-3050.	4.0	17
262	2D Inorganic Nanosheets: Twoâ€Đimensional Dielectric Nanosheets: Novel Nanoelectronics From Nanocrystal Building Blocks (Adv. Mater. 2/2012). Advanced Materials, 2012, 24, 209-209.	21.0	17
263	Grouping and aggregation of ligand protected Au ₉ clusters on TiO ₂ nanosheets. RSC Advances, 2016, 6, 110765-110774.	3.6	17
264	Crystal structure of octatitanate M2Ti8O17 (M =K, Rb). Journal of Solid State Chemistry, 1991, 92, 537-542.	2.9	16
265	Characterization and acidic properties of silica pillared titanates. Journal of Materials Chemistry, 2001, 11, 841-845.	6.7	16
266	Synthesis of LDH Nanosheets and their Layer-by-Layer Assembly. Recent Patents on Nanotechnology, 2012, 6, 159-168.	1.3	16
267	The aqueous colloidal suspension of ultrathin 2D MCM-22P crystallites. Chemical Communications, 2014, 50, 7378.	4.1	16
268	Insight into the structural and electronic nature of chemically exfoliated molybdenum disulfide nanosheets in aqueous dispersions. Dalton Transactions, 2018, 47, 3014-3021.	3.3	16
269	General Synthesis of Layered Rare-Earth Hydroxides (RE = Sm, Eu, Gd, Tb, Dy, Ho, Er, Y) and Direct Exfoliation into Monolayer Nanosheets with High Color Purity. Journal of Physical Chemistry Letters, 2021, 12, 10135-10143.	4.6	16
270	Correlation betweenTcand Lattice Parameters of Novel Superconducting Sodium Co Oxide Hydrate. Journal of the Physical Society of Japan, 2004, 73, 2590-2591.	1.6	15

#	Article	IF	CITATIONS
271	Graphene oxide/titania hybrid films with dual-UV-responsive surfaces of tunable wettability. RSC Advances, 2012, 2, 10829.	3.6	15
272	Highly Enhanced and Switchable Photoluminescence Properties in Pillared Layered Hydroxides Stabilizing Ce ³⁺ . Journal of Physical Chemistry C, 2015, 119, 26229-26236.	3.1	15
273	Monolayer Attachment of Metallic MoS ₂ on Restacked Titania Nanosheets for Efficient Photocatalytic Hydrogen Generation. ACS Applied Energy Materials, 2018, 1, 6912-6918.	5.1	15
274	Superlattice films of semiconducting oxide and rare-earth hydroxide nanosheets for tunable and efficient photoluminescent energy transfer. Nanoscale, 2021, 13, 4551-4561.	5.6	15
275	Solution-Processed Two-Dimensional Metal Oxide Anticorrosion Nanocoating. Nano Letters, 2021, 21, 7044-7049.	9.1	15
276	Chemically exfoliated inorganic nanosheets for nanoelectronics. Applied Physics Reviews, 2022, 9, .	11.3	15
277	Distribution coefficients of alkaline earth metal ions and their possible applications on crystalline hydrous titanium dioxide fibers Bunseki Kagaku, 1983, 32, E33-E39.	0.2	14
278	A new oxidation process of potassium titanium dioxide bronze with the hollandite structure. Journal of Solid State Chemistry, 1991, 92, 80-87.	2.9	14
279	New Family of Lanthanide-Based Inorganic–Organic Hybrid Frameworks: Ln ₂ (OH) ₄ [O ₃ S(CH ₂) _{<i>n</i>} SO _{3(Ln = La, Ce, Pr, Nd, Sm; <i>n</i> = 3, 4) and Their Derivatives. Inorganic Chemistry, 2013, 52, 1755-1761.}	>]Â420H≺su	b>₽∗/sub>⊖
280	Artificial design for new ferroelectrics using nanosheet-architectonics concept. Nanotechnology, 2015, 26, 244001.	2.6	14
281	Layer-by-layer engineering of two-dimensional perovskite nanosheets for tailored microwave dielectrics. Applied Physics Express, 2017, 10, 091501.	2.4	14
282	Visible-Light-Induced Hydrophilic Effect in an Ultrathin Hybrid Film of Titania Nanosheet and an Optical Active Ruthenium(II) Complex Cation. Journal of Physical Chemistry C, 2010, 114, 19697-19703.	3.1	13
283	X-ray Diffraction Study on Restacked Flocculates from Binary Colloidal Nanosheet Systems Ti _{0.91} O ₂ â^`MnO ₂ , Ca ₂ Nb ₃ O ₁₀ â^`Ti _{0.91} O ₂ , and Ca ₂ Nb ₃ O ₁₀ â^`MnO ₂ . Journal of Physical Chemistry C,	3.1	13
284	2011, 115, 8555-8566. Soft-Chemical Exfoliation of RbSrNb ₂ O ₆ F into Homogeneously Unilamellar Oxyfluoride Nanosheets. Inorganic Chemistry, 2013, 52, 415-422.	4.0	13
285	Tunable Chemical Coupling in Two-Dimensional van der Waals Electrostatic Heterostructures. ACS Nano, 2019, 13, 11214-11223.	14.6	13
286	Sizeâ€Independent Fast Ion Intercalation in Twoâ€Dimensional Titania Nanosheets for Alkaliâ€Metalâ€Ion Batteries. Angewandte Chemie, 2019, 131, 8832-8837.	2.0	13
287	Enhancing the Catalytic Activity of Palladium Nanoparticles via Sandwich-Like Confinement by Thin Titanate Nanosheets. ACS Catalysis, 2021, 11, 2754-2762.	11.2	13
288	X-Ray Diffraction Study on Crystalline and Osmotic Swelling of a Layered Titanate. Molecular Crystals and Liquid Crystals, 1998, 311, 417-422.	0.3	12

#	Article	IF	CITATIONS
289	X-ray nanospectroscopic characterization of a molecularly thin ferromagnetic Ti1â^'xCoxO2 nanosheet. Applied Physics Letters, 2008, 93, 093112.	3.3	12
290	Structural study of photoinduced hydrophilicity of titania nanosheet film. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 161, 12-15.	3.5	12
291	Realization of graphene field-effect transistor with high- \hat{I}^{e} HCa2Nb3O10 nanoflake as top-gate dielectric. Applied Physics Letters, 2013, 103, .	3.3	12
292	Scalable Design of Twoâ€Ðimensional Oxide Nanosheets for Construction of Ultrathin Multilayer Nanocapacitor. Small, 2020, 16, 2003485.	10.0	12
293	Rational Assembly of Two-Dimensional Perovskite Nanosheets as Building Blocks for New Ferroelectrics. ACS Applied Materials & Interfaces, 2021, 13, 1783-1790.	8.0	12
294	Construction of Multilayer Films and Superlattice- and Mosaic-like Heterostructures of 2D Metal Oxide Nanosheets via a Facile Spin-Coating Process. ACS Applied Materials & Interfaces, 2021, 13, 43258-43265.	8.0	12
295	Solution-Based Fabrication of Perovskite Multilayers and Superlattices Using Nanosheet Process. Japanese Journal of Applied Physics, 2011, 50, 09NA10.	1.5	12
296	Laue Function Analysis of Colloidal Lithium Taeniolite. Langmuir, 1999, 15, 5509-5512.	3.5	11
297	In-Situ Transmission Electron Microscopic Study of Perovskite-type Niobate Nanosheets under Electron-Irradiation and Heating. Journal of Physical Chemistry B, 2003, 107, 6698-6703.	2.6	11
298	Origin of Extended UV Stability of 2D Atomic Layer Titania-Based Perovskite Solar Cells Unveiled by Ultrafast Spectroscopy. ACS Applied Materials & Interfaces, 2019, 11, 21473-21480.	8.0	11
299	Secondary Electron Imaging of Monolayer Titania Nanosheets. Applied Physics Express, 2009, 2, 105504.	2.4	10
300	Internal structure and mechanical property of an anisotropic hydrogel with electrostatic repulsion between nanosheets. Polymer, 2019, 177, 43-48.	3.8	10
301	Propagating wave in a fluid by coherent motion of 2D colloids. Nature Communications, 2021, 12, 6771.	12.8	10
302	Transition-metal hydroxide nanosheets with peculiar double-layer structures as efficient electrocatalysts. Chem Catalysis, 2022, 2, 867-882.	6.1	10
303	IMMOBILIZATION OF STRONTIUM FROM AN AQUEOUS SOLUTION USING THE CRYSTALLINE HYDROUS TITANIUM DIOXIDE FIBERS. Chemistry Letters, 1981, 10, 957-960.	1.3	9
304	DSC studies on reactions of the elements with sulfur. Solid State Ionics, 2004, 172, 421-424.	2.7	9
305	Synthesis and electrochemical properties of Li2S–B2S3–Li4SiO4. Solid State Ionics, 2006, 177, 2601-2603.	2.7	9
306	Scanning Atom Probe Study of Dissociation of Organic Molecules on Titanium Oxide. Japanese Journal of Applied Physics, 2006, 45, 1892-1896.	1.5	9

#	Article	IF	CITATIONS
307	Solution-Based Fabrication of High-κ Dielectric Nanofilms Using Titania Nanosheets as a Building Block. Japanese Journal of Applied Physics, 2007, 46, 6979.	1.5	9
308	Gigantic plasmon resonance effects on magneto-optical activity of molecularly thin ferromagnets near gold surfaces. Journal of Materials Chemistry C, 2013, 1, 2520.	5.5	9
309	Sorption of Ammonia/Ammonium Ion on Crystalline Hydrous Titanium Dioxide Fibers. Bulletin of the Chemical Society of Japan, 1984, 57, 1331-1335.	3.2	8
310	Adsorption of alkaline earth metal ions on crystalline hydrous titanium dioxide fibers at 298 to 353K Bunseki Kagaku, 1984, 33, E159-E162.	0.2	8
311	Electric Dichroism Studies on an Aqueous Dispersion of Unilamellar Titanium Oxides:  Optical Anisotropy near the Absorption Edge. Journal of Physical Chemistry B, 2004, 108, 17306-17312.	2.6	8
312	High-temperature dielectric responses of molecularly-thin titania nanosheet. Journal of the Ceramic Society of Japan, 2015, 123, 335-339.	1.1	8
313	Thermally stable dielectric responses in uniaxially (001)-oriented CaBi4Ti4O15 nanofilms grown on a Ca2Nb3O10â^' nanosheet seed layer. Scientific Reports, 2016, 6, 20713.	3.3	8
314	High-temperature dielectric responses in all-nanosheet capacitors. Japanese Journal of Applied Physics, 2017, 56, 06GH09.	1.5	8
315	Intrinsic and Defect-Related Elastic Moduli of Boron Nitride Nanotubes As Revealed by <i>in Situ</i> Transmission Electron Microscopy. Nano Letters, 2019, 19, 4974-4980.	9.1	8
316	A New Detection System of Saturation Transfer Electron Paramagnetic Resonance Spectroscopy by a Fourier Transformation Technique. Applied Spectroscopy, 1980, 34, 456-460.	2.2	7
317	Influence of Water Agent on High-Pressure/High-Temperature Transformation of Graphitic BC2N. Chemistry of Materials, 2001, 13, 350-354.	6.7	7
318	Fabrication and Electrochemical Characterization of Molecularly Alternating Self-Assembled Films and Capsules of Titania Nanosheets and Gold Nanoparticles. Current Nanoscience, 2007, 3, 155-160.	1.2	7
319	Simulation of powder diffraction patterns of mixed-layer compounds in the restacked binary nanosheet system Ti _{0.91} O ₂ –MnO ₂ . Journal of Applied Crystallography, 2009, 42, 22-29.	4.5	7
320	2 × 2 Superstructure in Sodium Cobalt Oxide Superconductors. Chemistry of Materials, 2009, 21, 3693-3700.	6.7	7
321	Oriented Film Growth of Ba _{1–<i>x</i>} Sr _{<i>x</i>} TiO ₃ Dielectrics on Glass Substrates Using 2D Nanosheet Seed Layer. ACS Applied Materials & Interfaces, 2013, 5, 4592-4596.	8.0	7
322	Advanced capacitor technology based on two-dimensional nanosheets. Japanese Journal of Applied Physics, 2016, 55, 1102A3.	1.5	7
323	Massive hydration-driven swelling of layered perovskite niobate crystals in aqueous solutions of organo-ammonium bases. Dalton Transactions, 2018, 47, 3022-3028.	3.3	7
324	Controlled Synthesis of Perforated Oxide Nanosheets with High Density Nanopores Showing Superior Water Purification Performance. ACS Applied Materials & amp; Interfaces, 2022, 14, 18513-18524.	8.0	7

#	Article	IF	CITATIONS
325	Phase Dependence of Saturation Transfer EPR Signals and Estimated Rotational Correlation Times. Applied Spectroscopy, 1982, 36, 174-178.	2.2	6
326	Solvent Extraction Separation of Alkaline Earth Metal Ions with Thenoyltrifluoroacetone and Trioctylphosphine Oxide in Carbon Tetrachloride. Solvent Extraction and Ion Exchange, 1991, 9, 471-479.	2.0	6
327	Formation of nano-sized particles of a solid electrolyte by laser ablation. Journal of Power Sources, 2005, 146, 703-706.	7.8	6
328	Spectral Analysis of Nanomaterials using a Transition-Edge Sensor Microcalorimeter Mounted on a Field-Emission Scanning Electron Microscope. Japanese Journal of Applied Physics, 2008, 47, 4835-4838.	1.5	6
329	Exploration of Mid-Temperature Alkali-Metal-Ion Extraction Route Using PTFE (AEP): Transformation of α-NaFeO ₂ -Type Layered Oxides into Rutile-Type Binary Oxides. Inorganic Chemistry, 2012, 51, 7317-7323.	4.0	6
330	Photocharge Trapping in Two-Sheet Reduced Graphene Oxide–Ti _{0.87} O ₂ Heterostructures and Their Photoreduction and Photomemory Applications. ACS Applied Nano Materials, 2019, 2, 6378-6386.	5.0	6
331	Preparation of 1D ultrathin niobate nanobelts by liquid exfoliation as photocatalysts for hydrogen generation. Chemical Communications, 2019, 55, 2417-2420.	4.1	6
332	Visualizing Transparent 2D Sheets by Fluorescence Quenching Microscopy. Small Methods, 2020, 4, 2000036.	8.6	6
333	Adsorption of Uranium from Nitric Acid Solutions Using Crystalline Hydrous Titanium Dioxide Fibers. Bulletin of the Chemical Society of Japan, 1987, 60, 4443-4444.	3.2	5
334	Ion-Exchange Separation of Barium Ions and Other Alkaline Earth Metal Ions by Dihydrogen Tetratitanate Hydrate Fibers at 298 K. Analytical Sciences, 1991, 7, 153-156.	1.6	5
335	Ordered and Disordered Aspects of Interlayer Guests in Superconducting Hydrous Sodium Cobalt Oxides. Chemistry of Materials, 2007, 19, 3519-3526.	6.7	5
336	Simulation of the powder diffraction pattern of randomly restacked Ca ₂ Nb ₃ O ₁₀ nanosheets. Journal of Applied Crystallography, 2009, 42, 1062-1067.	4.5	5
337	(Invited) New Dielectric Nanomaterials Fabricated from Nanosheet Technique. ECS Transactions, 2012, 45, 3-8.	0.5	5
338	ADSORPTION BEHAVIOR OF COBALT(II) IONS ON LAYERED DIHYDROGEN TETRATITANATE HYDRATE FIBERS IN AQUEOUS SOLUTIONS IN THE RANGE FROM 298 to 523 K. Solvent Extraction and Ion Exchange, 1990, 8, 173-185.	2.0	4
339	ION-EXCHANGE SEPARATION OF SODIUM AND POTASSIUM IONS ON DIHYDROGEN TETRATITANATE HYDRATE FIBERS AT VARIOUS TEMPERATURES. Solvent Extraction and Ion Exchange, 1993, 11, 159-169.	2.0	4
340	A bona fide two-dimensional percolation model: an insight into the optimum photoactivator concentration in La2/3-xEuxTa2O7nanosheets. Science and Technology of Advanced Materials, 2011, 12, 044601.	6.1	4
341	EELS study of Fe- or Co-doped titania nanosheets. Microscopy (Oxford, England), 2015, 64, 77-85.	1.5	4
342	One-dimensional large tunnels in the new compound: KxGa16+xTi16â^xO56 (x ≦ 2). Journal of Solid State Chemistry, 1987, 68, 177-180.	2.9	3

#	Article	IF	CITATIONS
343	Pattern analysis and interpretation of scattering from short-range order stacking in the layered composite crystal 2H-Na _{<i>x</i>} CoO ₂ · <i>y</i> D ₂ O (<i>x</i> â‰f) Tj	ETQqå 1 ().78\$4314 rgB
344	Chemical composition and magnetic property modifications of Na2Ti2Sb2O using PTFE as an alkali–metal ion extraction reagent. Journal of Fluorine Chemistry, 2014, 168, 189-192.	1.7	3
345	Tunable Mechanical and Electrical Properties of Coaxial BN Nanotubes. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800576.	2.4	3
346	All Solid-State Photoelectrochemical Cell with RbAg[sub 4]I[sub 5] as the Electrolyte. Electrochemical and Solid-State Letters, 2003, 6, A187.	2.2	2
347	Magneto-Optical Effects in Superlattice Assemblies of Ferromagnetic Nanosheets. Key Engineering Materials, 2007, 350, 15-18.	0.4	2
348	Magnetically ordered phase of sodium cobalt oxyhydrate. Journal of Magnetism and Magnetic Materials, 2007, 310, e136-e137.	2.3	2
349	Fabrication and Properties of Microcapacitors with a One-nanometer-thick Single Ti0.87O2 Nanosheet. Chemistry Letters, 2014, 43, 307-309.	1.3	2
350	Scission of 2D Inorganic Nanosheets via Physical Adsorption on a Nonflat Surface. Advanced Materials Interfaces, 0, , 2102591.	3.7	2
351	Single-Crystal Growth of Layered Birnessite-Type Manganese Oxides and Their Delamination into MnO ₂ Nanosheets. Crystal Growth and Design, 2022, 22, 625-632.	3.0	2
352	Quantitative Separation of Alkaline Earth Metal Ions by Triple-phase Separation Method. Chemistry Letters, 1998, 27, 1167-1168.	1.3	1
353	Characterization of n-Siâ^•RbAg[sub 4]I[sub 5] Interfaces by Photocurrent Measurements and Electrochemical Impedance Spectroscopy. Journal of the Electrochemical Society, 2005, 152, A1241.	2.9	1
354	Synthesis and Magnetic Properties of NaxCoO2 (x = 0.4 & 0.5). AIP Conference Proceedings, 2006, , .	0.4	1
355	Morphology and chemical composition analysis of inorganic nanosheets by the field-emission scanning electron microscope system. Journal of Electron Microscopy, 2008, 58, 1-6.	0.9	1
356	Nanoâ€Materials Design for Highâ€ <i>T</i> _C Ferromagnets of <scp><scp>Ti_{1â€x}Co_xO₂</scp></scp> Nanosheets. International Journal of Applied Ceramic Technology, 2012, 9, 936-941.	2.1	1
357	Study of Molecular Reaction on Titanium Oxide by the Scanning Atom Probe. E-Journal of Surface Science and Nanotechnology, 2006, 4, 521-527.	0.4	1
358	New Perovskite Nanomaterials and Their Integrations into High-k Dielectrics. Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), 2011, 2011, 000072-000077.	0.2	1
359	Microscopic Interpretation of the Ion-Exchange Reactions in the Layered Titanates. Journal of Ion Exchange, 1993, 4, 53-64.	0.3	1
360	Tunnel Cation Ordering in K- and Rb-Octatitanates. Journal of Solid State Chemistry, 1993, 105, 480-488.	2.9	0

#	Article	IF	CITATIONS
361	Na+/Li+Exchange in One-Dimensional Tunnels of the Framework Structure. Chemistry Letters, 1995, 24, 1105-1106.	1.3	0
362	Fabrication of Multilayer Ultrathin Films through Layer-By-Layer Assembly of Delaminated MnO2 Nanosheets and Polyelectrolytes. , 2005, , 135-142.		0
363	Co Nuclear-Quadrupole-Resonance Measurements on NaxCoO2â‹yH2O — Phase Diagram for Bilayered-Hydrate System. AIP Conference Proceedings, 2006, , .	0.4	0
364	Ferromagnetic Properties in Co-Substituted Titania Nanosheets. Key Engineering Materials, 2008, 388, 119-122.	0.4	0
365	Crystal Structure of Cobalt Oxide Superconductors and Their Short-Range-Order Stacking. Nihon Kessho Gakkaishi, 2011, 53, 409-415.	0.0	0
366	Fabrication of Artificial Superlattices Using Perovskite Nanosheets. Key Engineering Materials, 2011, 485, 321-324.	0.4	0
367	Rücktitelbild: Polymeric Micelle Assembly with Inorganic Nanosheets for Construction of Mesoporous Architectures with Crystallized Walls (Angew. Chem. 14/2015). Angewandte Chemie, 2015, 127, 4478-4478.	2.0	0
368	Kinking effects and transport properties of coaxial BN-C nanotubes as revealed by in situ transmission electron microscopy and theoretical analysis. APL Materials, 2019, 7, 101118.	5.1	0
369	Exfoliation of Inorganic Ion-exchangers with a Layered Structure and Applications. Journal of Ion Exchange, 2008, 19, 81-87.	0.3	0
370	Nanosheet Coating Process. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2014, 83, 95-99.	0.1	0
371	Syntheses of Low-Pressure and High-Pressure Phases in the B-C-N System Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 1998, 8, 177-184.	0.0	0
372	Controlled Assembly of Inorganic Nanosheets and Its Application to High-Performance Metamaterials. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2019, 70, 355-358.	0.2	0