
Ke Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/377046/publications.pdf Version: 2024-02-01

KE WANC

#	Article	IF	CITATIONS
1	Filter-Enhanced Multi-User Scheme for Spatial Modulation Based Optical Wireless Communication Systems. Journal of Lightwave Technology, 2022, 40, 74-84.	4.6	1
2	Timing-Jitter Tolerant Nyquist Pulse for Terahertz Communications. Journal of Lightwave Technology, 2022, 40, 557-564.	4.6	4
3	In-plane defect engineering on MoS2 through a novel two-phase hydrothermal synthesis. Catalysis Today, 2022, 404, 269-278.	4.4	6
4	Machine Learning Applications for Short Reach Optical Communication. Photonics, 2022, 9, 30.	2.0	19
5	Recent advances on next generation of polyzwitterion-based nano-vectors for targeted drug delivery. Journal of Controlled Release, 2022, 343, 492-505.	9.9	18
6	Remote-Powered Infrared Indoor Optical Wireless Communication Systems. IEEE Photonics Technology Letters, 2022, 34, 455-458.	2.5	6
7	IEEE 802.15.3d-Compliant Waveforms for Terahertz Wireless Communications. Journal of Lightwave Technology, 2021, 39, 7748-7760.	4.6	11
8	Synthesis of zwitterionic chimeric polymersomes for efficient protein loading and intracellular delivery. Polymer Chemistry, 2021, 12, 5085-5092.	3.9	7
9	Several carbon-coated Ga ₂ O ₃ anodes: efficient coating of reduced graphene oxide enhanced the electrochemical performance of lithium ion batteries. Dalton Transactions, 2021, 50, 3660-3670.	3.3	14
10	Indoor optical wireless communication system with continuous and simultaneous positioning. Optics Express, 2021, 29, 4582.	3.4	8
11	Superior lithium-storage properties derived from a g-C ₃ N ₄ -embedded honeycomb-shaped meso@mesoporous carbon nanofiber anode loaded with Fe ₂ O ₃ for Li-ion batteries. Dalton Transactions, 2021, 50, 9775-9786.	3.3	15
12	Metal–Organic Aerogel Assisted Reduced Graphene Oxide Coated Sulfur as a Cathode Material for Lithium Sulfur Batteries. Energy & Fuels, 2021, 35, 2742-2749.	5.1	13
13	Dual functionality of mixed Cu-based two-dimensional (2D) heterostructures derived from electronic waste. Green Chemistry, 2021, 23, 5511-5523.	9.0	5
14	A Framework for the Design and Deployment of Large-Scale LPWAN Networks for Smart Cities Applications. IEEE Internet of Things Magazine, 2021, 4, 53-59.	2.6	13
15	Low-Complexity Zero-Forcing Equalization for MIMO SC-FDMA Terahertz Communications. , 2021, , .		2
16	Recurrent neural network FPGA hardware accelerator for delay-tolerant indoor optical wireless communications. Optics Express, 2021, 29, 26165.	3.4	6
17	A Study on MIMO Gain of UAV-to-Ground Channel in Urban Environments. , 2021, , .		3
18	Indoor optical wireless access networks—recent progress [Invited]. Journal of Optical Communications and Networking, 2021, 13, A178.	4.8	14

#	Article	IF	CITATIONS
19	Terahertz Pulse Shaping using Microwave-Photonic Delay Line Filters. , 2021, , .		Ο
20	Waveforms with High Spectral Efficiency for Terahertz Communications. , 2021, , .		0
21	Optical Wireless Communications Using Signal Space Diversity with Spatial Modulation. Photonics, 2021, 8, 468.	2.0	6
22	Sensing-Based SU Access Performance Study with a Four-State Markov Model in Cognitive Radios. , 2021, , .		0
23	Filter-Enhanced Spatial Modulation and Multiplexing in Indoor Optical Wireless Systems. IEEE Photonics Technology Letters, 2021, 33, 1479-1482.	2.5	0
24	Remote Power of Rural Network Nodes for Future Optical Networks. , 2021, , .		0
25	Neural Networks and FPGA Hardware Accelerators for Millimeter-Wave Radio-over-Fiber Systems. , 2020, , .		5
26	Machine Learning Techniques in Radio-over-Fiber Systems and Networks. Photonics, 2020, 7, 105.	2.0	18
27	Manipulating Auâ^'CeO ₂ Interfacial Structure Toward Ultrahigh Mass Activity and Selectivity for CO ₂ Reduction. ChemSusChem, 2020, 13, 6621-6628.	6.8	15
28	Quasi-Passive Indoor Optical Wireless Communication Systems. IEEE Photonics Technology Letters, 2020, 32, 1373-1376.	2.5	6
29	Pulse Shaping for IEEE 802.15.3d Standard Compliant Terahertz Communications. , 2020, , .		3
30	Recycling Plastic Waste for Environmental Remediation in Water Purification and CO ₂ Capture. ACS Applied Polymer Materials, 2020, 2, 2586-2593.	4.4	22
31	Optical Wireless Communications Adopting Delay-Tolerant Repetition-Coding With Orthogonal-Filters and On-Demand Equalization. Journal of Lightwave Technology, 2020, 38, 4250-4259.	4.6	4
32	Delay-Tolerant Indoor Optical Wireless Communication Systems Based on Attention-Augmented Recurrent Neural Network. Journal of Lightwave Technology, 2020, 38, 4632-4640.	4.6	6
33	FPGA-based neural network accelerators for millimeter-wave radio-over-fiber systems. Optics Express, 2020, 28, 13384.	3.4	8
34	Gigabit/s Optical Wireless Access and Indoor Networks. , 2020, , .		4
35	Photonic Generation of Sub-Terahertz Signals using Self Phase Modulation in Highly Nonlinear Fibers. , 2020, , .		0
36	Neural Networks and Spatial Domain Technologies in High-Speed Optical Wireless Communications. , 2020, , .		4

3

#	Article	IF	CITATIONS
37	Indoor optical wireless communication system with filters-enhanced generalized spatial modulation and carrierless amplitude and phase (CAP) modulation. Optics Letters, 2020, 45, 4980.	3.3	7
38	High-speed reconfigurable free-space optical interconnects with carrierless-amplitude-phase modulation and filter-enhanced spatial modulation. Optics Letters, 2020, 45, 5476.	3.3	1
39	Novel Spatial Modulation Channel Index Detection in Optical Wireless Communications with Signal Space Diversity. , 2020, , .		1
40	Bismuth Sulfide–Integrated Carbon Derived from Organic Ligands as a Superior Anode for Sodium Storage. Energy Technology, 2019, 7, 1900668.	3.8	8
41	Performance Analysis of Repetition-Coding and Space-Time-Block-Coding as Transmitter Diversity Schemes for Indoor Optical Wireless Communications. Journal of Lightwave Technology, 2019, 37, 5170-5177.	4.6	23
42	One-step synthesis of MOF-derived Ga/Ga ₂ O ₃ @C dodecahedra as an anode material for high-performance lithium-ion batteries. Dalton Transactions, 2019, 48, 12386-12390.	3.3	15
43	Differential Transmission Lines Loaded With Magnetic LC Resonators and Application in Common Mode Suppression. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 3811-3821.	5.4	29
44	Digital Orthogonal-Filters Enhanced Spatial Modulation for High-Speed Indoor Optical Wireless Communications. Journal of Lightwave Technology, 2019, 37, 5988-5995.	4.6	9
45	Communication Network Simulation System for System Protection Service. IOP Conference Series: Materials Science and Engineering, 2019, 490, 062077.	0.6	0
46	Operation Quality Evaluation of Power Communication Network Based on Business QOS Indicators. Journal of Physics: Conference Series, 2019, 1187, 022041.	0.4	0
47	Risk Assessment of Power Communication Network Based on LM-BP Neural Network. Journal of Physics: Conference Series, 2019, 1187, 022063.	0.4	2
48	Bi ₂ S ₃ /C nanorods as efficient anode materials for lithium-ion batteries. Dalton Transactions, 2019, 48, 1906-1914.	3.3	48
49	A novel Zr-MOF-based and polyaniline-coated UIO-67@Se@PANI composite cathode for lithium–selenium batteries. Dalton Transactions, 2019, 48, 10191-10198.	3.3	17
50	The optimization of networking method for the system protection communication networks based on the delay analysis. Journal of Physics: Conference Series, 2019, 1187, 042001.	0.4	1
51	MAC protocol for indoor optical wireless networks. IET Communications, 2019, 13, 3158-3167.	2.2	3
52	Demonstration of Optical Wireless Communications using Spatial Modulation with Signal Space Diversity. , 2019, , .		4
53	ZIF-67@Se@MnO ₂ : A Novel Co-MOF-Based Composite Cathode for Lithium–Selenium Batteries. Journal of Physical Chemistry C, 2019, 123, 2048-2055.	3.1	35
54	Online Sparse Multi-Output Gaussian Process Regression and Learning. IEEE Transactions on Signal and Information Processing Over Networks, 2019, 5, 258-272.	2.8	16

#	Article	IF	CITATIONS
55	Experimental Demonstration of Indoor Infrared Optical Wireless Communications With a Silicon Photonic Integrated Circuit. Journal of Lightwave Technology, 2019, 37, 619-626.	4.6	25
56	High-Speed Reconfigurable Free-Space Optical Interconnects with Carrierless-Amplitude-Phase Modulation and Space-Time-Block Code. Journal of Lightwave Technology, 2019, 37, 627-633.	4.6	10
57	Recurrent neural network (RNN) for delay-tolerant repetition-coded (RC) indoor optical wireless communication systems. Optics Letters, 2019, 44, 3745.	3.3	15
58	Delay-Tolerant Repetition-Coding for Optical Wireless Communications. , 2019, , .		1
59	Wavelength Multiplexing and Multi-User Access in Near-Infrared Indoor Optical Wireless Communication Systems. , 2019, , 83-106.		0
60	Sensor Selection Method for Target Tracking based on Hybrid Binary Whale Optimization Algorithm in Wireless Sensor Networks. , 2019, , .		0
61	Indoor near-infrared optical wireless communications with silicon photonic integrated circuits and spatial diversity. , 2019, , .		0
62	Demonstration of Indoor Optical Wireless Communications with Spatial Diversity Using Repetition-Coding and Space-Time-BlockCoding. , 2018, , .		0
63	High-speed Optical Wireless Communications for Local Area Networks. , 2018, , .		1
64	Ultra broadband, low loss and polarization independent silicon nitrite integrated optical power splitter. , 2018, , .		0
65	Quasi-Passive Reconfigurable Node for 5G Mobile Optical Backhaul Networks. Journal of Lightwave Technology, 2018, 36, 5432-5441.	4.6	2
66	High-speed indoor optical wireless communication system employing a silicon integrated photonic circuit. Optics Letters, 2018, 43, 3132.	3.3	35
67	Self-Supported NiSe ₂ Nanowire Arrays on Carbon Fiber Paper as Efficient and Stable Electrode for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 11884-11891.	6.7	37
68	Dynamic Tuning of Contention Window for Optical Wireless Networks. , 2018, , .		4
69	Robust and Secure Indoor Optical Wireless Communications Supporting Multiple Users. , 2018, , .		0
70	80 Gb/s Free-Space Reconfigurable Optical Interconnects with Carrierless-Amplitude-Phase Modulation and Space-Time Block Code. , 2018, , .		1
71	Experimental Demonstration of a 12.5 Gb/s Indoor Optical Wireless Communication System with Silicon Integrated Photonic Circuit. , 2018, , .		1
72	Bidirectional Quasi-Passive Reconfigurable (Bi-QPAR) Remote Node for Future Optical Access Networks. Journal of Lightwave Technology, 2017, 35, 2109-2117.	4.6	4

#	Article	IF	CITATIONS
73	Space-Time-Coded High-Speed Reconfigurable Card-to-Card Free-Space Optical Interconnects. Journal of Optical Communications and Networking, 2017, 9, A189.	4.8	7
74	Time-Slot Coding Scheme With Adaptive Loading Function for Multiple Access in Indoor Optical Wireless Communications. Journal of Lightwave Technology, 2017, 35, 4079-4086.	4.6	3
75	Silicon Integrated Optical Isolator With Dynamic Non-Reciprocity. IEEE Photonics Technology Letters, 2017, 29, 1261-1264.	2.5	3
76	Silicon integrated optical devices. , 2017, , .		0
77	Experimental demonstration of time-slot coding scheme for multiple access in high-speed optical wireless communications with imaging receiver. , 2017, , .		0
78	High-efficiency interlayer coupler on silicon nitride. , 2017, , .		0
79	Four-wave-mixing based silicon integrated optical isolator with dynamic non-reciprocity. , 2017, , .		0
80	Space-time-coded reconfigurable card-to-card optical interconnects with broadcast capability. , 2017, ,		0
81	Ultra-broadband, compact, and high-reflectivity circular Bragg grating mirror based on 220 nm silicon-on-insulator platform. Optics Express, 2017, 25, 6653.	3.4	21
82	Secure multiple access for indoor optical wireless communications with time-slot coding and chaotic phase. Optics Express, 2017, 25, 22046.	3.4	16
83	Indoor infrared optical wireless localization system with background light power estimation capability. Optics Express, 2017, 25, 22923.	3.4	26
84	Multi-Dimensional Quasi-Passive Reconfigurable (MD-QPAR) Node for Future 5G Optical Networks. , 2017, , .		0
85	A Dual-Infrared-Transmitter Optical Wireless Based Indoor User Localization System with High Accuracy. , 2017, , .		0
86	Remotely Powered and Reconfigured Quasi-Passive Reconfigurable Nodes for Optical Access Networks. Journal of Electrical and Computer Engineering, 2016, 2016, 1-10.	0.9	9
87	Bi-Directional Space-Time Coded Reconfigurable Board-to-Board Free-Space Optical Interconnects. , 2016, , .		0
88	Low-Loss and Broadband <inline-formula> <tex-math notation="LaTeX">\$2 imes 2\$ </tex-math> </inline-formula> Polarization Beam Splitter Based on Silicon Nitride Platform. IEEE Photonics Technology Letters, 2016, 28, 1936-1939.	2.5	23
89	Quasi-Passive Optical Infrastructure for Future 5G Wireless Networks: Pros and Cons. Journal of Optical Communications and Networking, 2016, 8, B111.	4.8	3
90	High-speed optical wireless personal area communication system supporting multiple users. , 2016, , .		1

High-speed optical wireless personal area communication system supporting multiple users. , 2016, , . 90

#	Article	IF	CITATIONS
91	Ultra-broadband and low-loss 3  dB optical power splitter based on adiabatic tapered silicon waveguides. Optics Letters, 2016, 41, 2053.	3.3	83
92	High-speed optical wireless communications for in-building personal area networks. , 2016, , .		2
93	Multi-gigabit indoor optical wireless networks $\hat{a} \in \mathbb{C}$ Feasibility and challenges. , 2016, , .		9
94	Optical wireless communications for high-speed in-building personal area networks. , 2016, , .		3
95	Short-range infrared optical wireless communications $\hat{a} \in \mathbb{C}^{n}$ Systems and integration. , 2016, , .		1
96	New palbociclib analogues modified at the terminal piperazine ring and their anticancer activities. European Journal of Medicinal Chemistry, 2016, 122, 546-556.	5.5	18
97	Four-Wave-Mixing-Based Silicon Integrated Optical Isolator With Dynamic Non-Reciprocity. IEEE Photonics Technology Letters, 2016, 28, 1739-1742.	2.5	18
98	High contrast circular grating reflector on silicon-on-insulator platform. Optics Letters, 2016, 41, 520.	3.3	13
99	Optical Wireless-Based Indoor Localization System Employing a Single-Channel Imaging Receiver. Journal of Lightwave Technology, 2016, 34, 1141-1149.	4.6	20
100	Full-Duplex Gigabit Indoor Optical Wireless Communication System With CAP Modulation. IEEE Photonics Technology Letters, 2016, 28, 790-793.	2.5	55
101	Experimental Demonstration of Optical Wireless Personal Area Communication System Supporting Multiple Users. , 2016, , .		2
102	Space-Time Coded High-Speed Reconfigurable Free-Space Card-to-Card Optical Interconnects with Extended Range. , 2016, , .		3
103	Time-slot coding scheme for multiple access in indoor optical wireless communications. Optics Letters, 2016, 41, 5166.	3.3	6
104	Bidirectional Quasi-Passive Reconfigurable (Bi-QPAR) Node for Flexible Access Networks. , 2016, , .		1
105	Experimental Demonstration of Optical Wireless Indoor Localization System with Background Light Power Estimation. , 2015, , .		4
106	Experimental demonstration of indoor optical wireless based 3-D localization system. , 2015, , .		0
107	Experimental demonstration of space-time-coded robust high-speed indoor optical wireless communication system. , 2015, , .		2
108	High-speed optical wireless communications in personal areas (Invited). , 2015, , .		0

#	Article	IF	CITATIONS
109	$2 ilde{A}-2$ silicon integrated optical phased array for beam steering applications. , 2015, , .		2
110	Ultra-broadband and low-loss optical power splitter based on tapered silicon waveguides. , 2015, , .		3
111	Full-duplex reconfigurable card-to-card optical interconnects based on hybrid free-space and multi-mode fiber propagation. , 2015, , .		0
112	Polarization insensitive vertical coupler for multi-layer silicon photonic integrated circuits. , 2015, , .		2
113	Experimental demonstration of a novel indoor optical wireless localization system for high-speed personal area networks. Optics Letters, 2015, 40, 1246.	3.3	20
114	A novel colorimetric and near-infrared fluorescent probe for hydrogen peroxide imaging in vitro and in vivo. RSC Advances, 2015, 5, 85957-85963.	3.6	43
115	Experimental Demonstration of Full-Duplex Optical Wireless Personal Area Communication System with 16-CAP Modulation. , 2015, , .		6
116	Photonics for Gigabit Wireless Networks. , 2015, , .		4
117	Experimental demonstration of free-space based 120  Gb/s reconfigurable card-to-card optical interconnects. Optics Letters, 2014, 39, 5717.	3.3	8
118	Free-Space 120 Gb/s Reconfigurable Card-to-Card Optical Wireless Interconnects with 16-CAP Modulation. , 2014, , .		3
119	Si integrated optical phased array for efficient beam steering in optical wireless communications. , 2014, , .		1
120	High-speed optical wireless communications in personal area networks. , 2014, , .		0
121	120 Gb/s reconfigurable optical interconnect based on hybrid free-space and MMF propagations. , 2014, , , \cdot		0
122	Broadband Bragg Grating Mirror Based on Circular and Horizontal Slot Silicon Waveguides for TMO Mode. , 2014, , .		0
123	High Index Contrast Circular Bragg Reflector on Silicon-On-Insulator with Flat and Broadband Spectrum. , 2014, , .		0
124	Experimental demonstration of high-speed reconfigurable card-to-card optical interconnects with broadcast capability. , 2013, , .		1
125	Performance of High-Speed Reconfigurable Free-Space Card-to-Card Optical Interconnects Under Air Turbulence. Journal of Lightwave Technology, 2013, 31, 1687-1693.	4.6	12
126	Experimental demonstration of high-speed free-space reconfigurable card-to-card optical interconnects. Optics Express, 2013, 21, 2850.	3.4	16

#	Article	IF	CITATIONS
127	High-speed free-space based reconfigurable card-to-card optical interconnects with broadcast capability. Optics Express, 2013, 21, 15395.	3.4	11
128	High-speed reconfigurable card-to-card optical interconnects based on hybrid free-space and multi-mode fiber propagations. Optics Express, 2013, 21, 31166.	3.4	3
129	Free-space optics for high-speed reconfigurable card-to-card optical interconnects. , 2013, , .		2
130	Experimental Demonstration of Reconfigurable Optical Interconnect based on Hybrid Free-Space and Multi-Mode Fiber Propagation. , 2013, , .		1
131	Experimental Demonstration of a Centralized Optical Wireless Indoor Localization System for High-Speed Communications in Personal Areas. , 2013, , .		1
132	High-Speed Full-Duplex Optical Wireless Communication System with Single Channel Imaging Receiver for Personal Area Networks. IEICE Transactions on Electronics, 2013, E96.C, 180-186.	0.6	0
133	High-Speed Reconfigurable Card-to-Card Optical Interconnects with Multicasting Capability. , 2013, , .		Ο
134	High-Speed Indoor Optical Wireless Communication System with a Steering Mirror Based Up-Link Receiver. , 2012, , .		5
135	High-speed indoor optical wireless communication system with single channel imaging receiver. Optics Express, 2012, 20, 8442.	3.4	27
136	High-speed indoor optical wireless communication system with single channel imaging receiver: erratum. Optics Express, 2012, 20, 25356.	3.4	0
137	Experimental demonstration of 3×310  Gb/s reconfigurable free space optical card-to-card interconnects. Optics Letters, 2012, 37, 2553.	3.3	13
138	Ultra-broadband indoor optical wireless communication system with multimode fiber. Optics Letters, 2012, 37, 1514.	3.3	8
139	Indoor WDM optical wireless communication system with single channel imaging receiver. , 2012, , .		1
140	High-speed optical wireless communication system with steering-mirror based receiver for personal area applications. , 2012, , .		0
141	High-Speed Reconfigurable Free-Space Card-to-Card Optical Interconnects. IEEE Photonics Journal, 2012, 4, 1407-1419.	2.0	16
142	Performance of reconfigurable free-space card-to-card optical interconnects under atmospheric turbulence. , 2012, , .		1
143	Indoor optical wireless localization system with height estimation for high-speed wireless communications in personal areas. , 2012, , .		3
144	Indoor optical wireless localization system for high-speed personal area networks. , 2012, , .		0

#	Article	IF	CITATIONS
145	Ultra-broadband optical wireless communication system with single channel imaging receiver and multi-mode fiber for personal area networks. , 2012, , .		0
146	Experimental Demonstration of a Full-Duplex Indoor Optical Wireless Communication System. IEEE Photonics Technology Letters, 2012, 24, 188-190.	2.5	35
147	Impact of Crosstalk on Indoor WDM Optical Wireless Communication Systems. IEEE Photonics Journal, 2012, 4, 375-386.	2.0	11
148	Impact of Polarization State on High-Speed Indoor Optical Wireless Communication System. , 2012, , .		0
149	Experimental Demonstration of an Indoor Localization System with Single Channel Imaging Receiver. , 2012, , .		2
150	Ultra-broadband indoor full-duplex WDM optical wireless communication with multi-mode fiber. , 2011, , .		0
151	High-Speed Optical Wireless Communication System for Indoor Applications. IEEE Photonics Technology Letters, 2011, 23, 519-521.	2.5	93
152	4\$,imes,\$12.5 Gb/s WDM Optical Wireless Communication System for Indoor Applications. Journal of Lightwave Technology, 2011, 29, 1988-1996.	4.6	84
153	Indoor gigabit full-duplex optical wireless communication system with SCM based multiple-user access. , 2011, , .		3
154	Impact of background light induced shot noise in high-speed full-duplex indoor optical wireless communication systems. Optics Express, 2011, 19, 21321.	3.4	20
155	Background Light Induced Noise and Its Effects on Indoor Gigabit Optical Wireless Communication Systems. , 2011, , .		0
156	12.5 Gbps Indoor Optical Wireless Communication System with Single Channel Imaging Receiver. , 2011, , .		1
157	Experimental demonstration of a novel indoor optical wireless localization system for tracking multiple users. , 2011, , .		1
158	High-Speed Full-Duplex Optical Wireless Communication Systems for Indoor Applications. , 2011, , .		3
159	Ultra-broadband Optical Wireless For Indoor Applications. , 2011, , .		0
160	Gigabit optical wireless communication system for indoor applications. , 2010, , .		3
161	High-speed duplex optical wireless communication system for indoor personal area networks. Optics Express, 2010, 18, 25199.	3.4	63
162	Gigabit optical wireless communication system for indoor applications. , 2010, , .		4

10

#	Article	IF	CITATIONS
163	Indoor gigabit optical wireless communication system for personal area networks. , 2010, , .		8
164	Gigabit Optical Wireless Communication System for Indoor Applications. , 2010, , .		1
165	Experimental Demonstration of Indoor Optical Wireless Communication System with Waveform Index Modulated Uplink. Optics Letters, 0, , .	3.3	1