
Frederic Simard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3770391/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Massive yet grossly underestimated global costs of invasive insects. Nature Communications, 2016, 7, 12986.	5.8	546
2	Highly evolvable malaria vectors: The genomes of 16 <i>Anopheles</i> mosquitoes. Science, 2015, 347, 1258522.	6.0	492
3	Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malaria Journal, 2008, 7, 163.	0.8	393
4	Averting a malaria disaster: will insecticide resistance derail malaria control?. Lancet, The, 2016, 387, 1785-1788.	6.3	366
5	Comparative Role of <i>Aedes albopictus</i> and <i>Aedes aegypti</i> in the Emergence of Dengue and Chikungunya in Central Africa. Vector-Borne and Zoonotic Diseases, 2010, 10, 259-266.	0.6	241
6	Insecticide resistance in Anopheles gambiae: data from the first year of a multi-country study highlight the extent of the problem. Malaria Journal, 2009, 8, 299.	0.8	233
7	A Research Agenda for Malaria Eradication: Vector Control. PLoS Medicine, 2011, 8, e1000401.	3.9	224
8	Ecological niche partitioning between Anopheles gambiae molecular forms in Cameroon: the ecological side of speciation. BMC Ecology, 2009, 9, 17.	3.0	211
9	Semipermeable species boundaries between Anopheles gambiae and Anopheles arabiensis: Evidence from multilocus DNA sequence variation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10818-10823.	3.3	186
10	Distribution of knock-down resistance mutations in Anopheles gambiae molecular forms in west and west-central Africa. Malaria Journal, 2008, 7, 74.	0.8	176
11	Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae. BMC Ecology, 2009, 9, 16.	3.0	174
12	Population Structure of Anopheles gambiae in Africa. , 2003, 94, 133-147.		171
13	Genetic differentiation of Anopheles gambiae populations from East and West Africa: comparison of microsatellite and allozyme loci. Heredity, 1996, 77, 192-200.	1.2	160
14	SPECIES IDENTIFICATION WITHIN THE ANOPHELES FUNESTUS GROUP OF MALARIA VECTORS IN CAMEROON AND EVIDENCE FOR A NEW SPECIES. American Journal of Tropical Medicine and Hygiene, 2003, 69, 200-205.	0.6	155
15	Pyrethroid tolerance is associated with elevated expression of antioxidants and agricultural practice in <i>Anopheles arabiensis</i> sampled from an area of cotton fields in Northern Cameroon. Molecular Ecology, 2008, 17, 1145-1155.	2.0	131
16	Geographic Distribution and Breeding Site Preference of <i>Aedes albopictus</i> and <i>Aedes aegypti</i> (Diptera: Culicidae) in Cameroon, Central Africa. Journal of Medical Entomology, 2005, 42, 726-731.	0.9	126
17	Genetic association of physically unlinked islands of genomic divergence in incipient species of <i>Anopheles gambiae</i> . Molecular Ecology, 2010, 19, 925-939.	2.0	123
18	Anthropogenic Habitat Disturbance and Ecological Divergence between Incipient Species of the Malaria Mosquito Anopheles gambiae. PLoS ONE, 2012, 7, e39453.	1.1	123

#	Article	IF	CITATIONS
19	Evidence for genetic differentiation between the molecular forms M and S within the Forest chromosomal form of Anopheles gambiae in an area of sympatry. Insect Molecular Biology, 2002, 11, 11-19.	1.0	122
20	Complexity of the Malaria Vectorial System in Cameroon: Contribution of Secondary Vectors to Malaria Transmission. Journal of Medical Entomology, 2006, 43, 1215-1221.	0.9	119
21	Anopheles and Plasmodium : from laboratory models to natural systems in the field. EMBO Reports, 2006, 7, 1285-1289.	2.0	118
22	Complexity of the Malaria Vectorial System in Cameroon: Contribution of Secondary Vectors to Malaria Transmission. Journal of Medical Entomology, 2006, 43, 1215-1221.	0.9	118
23	FIRST REPORT OF KNOCKDOWN MUTATIONS IN THE MALARIA VECTOR ANOPHELES GAMBIAE FROM CAMEROON. American Journal of Tropical Medicine and Hygiene, 2006, 74, 795-797.	0.6	117
24	The spread of the Leu-Phe kdr mutation through Anopheles gambiae complex in Burkina Faso: genetic introgression and de novo phenomena. Tropical Medicine and International Health, 2004, 9, 1267-1273.	1.0	114
25	Multiple Origins of Knockdown Resistance Mutations in the Afrotropical Mosquito Vector Anopheles gambiae. PLoS ONE, 2007, 2, e1243.	1.1	108
26	Dynamics of insecticide resistance in the malaria vector <i>Anopheles gambiae s.l.</i> from an area of extensive cotton cultivation in Northern Cameroon. Tropical Medicine and International Health, 2008, 13, 476-486.	1.0	108
27	Multiple Insecticide Resistance in Anopheles gambiae s.l. Populations from Burkina Faso, West Africa. PLoS ONE, 2012, 7, e48412.	1.1	108
28	Species and Populations of the <i>Anopheles gambiae</i> Complex in Cameroon with Special Emphasis on Chromosomal and Molecular Forms of <i>Anopheles gambiae</i> s.s Journal of Medical Entomology, 2005, 42, 998-1005.	0.9	103
29	Breakpoint structure reveals the unique origin of an interspecific chromosomal inversion (2La) in the Anopheles gambiae complex. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6258-6262.	3.3	102
30	Notes on the blood-feeding behavior of Aedes albopictus (Diptera: Culicidae) in Cameroon. Parasites and Vectors, 2012, 5, 57.	1.0	98
31	Adaptive divergence between incipient species of <i>Anopheles gambiae</i> increases resistance to <i>Plasmodium</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 244-249.	3.3	97
32	Unravelling complexities in human malaria transmission dynamics in Africa through a comprehensive knowledge of vector populations. Comparative Immunology, Microbiology and Infectious Diseases, 2004, 27, 357-375.	0.7	96
33	Larval habitat segregation between the molecular forms of the mosquito <i>Anopheles gambiae</i> in a rice field area of Burkina Faso, West Africa. Medical and Veterinary Entomology, 2012, 26, 9-17.	0.7	96
34	Comparison of Behavior and Vector Efficiency of Anopheles gambiae and An. arabiensis (Diptera:) Tj ETQq0 0 0 (rgBT /Over	lock 10 Tf 50
35	Increased melanizing activity in Anopheles gambiae does not affect development of Plasmodium falciparum. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103–16858-16863	3.3	93

36Multiple insecticide resistance mechanisms in Anopheles gambiae s.l. populations from Cameroon,
Central Africa. Parasites and Vectors, 2013, 6, 41.1.093

#	Article	IF	CITATIONS
37	Persistence of Anopheles arabiensis during the severe dry season conditions in Senegal: an indirect approach using microsatellite loci. Insect Molecular Biology, 2000, 9, 467-479.	1.0	92
38	Species identification within the Anopheles funestus group of malaria vectors in Cameroon and evidence for a new species. American Journal of Tropical Medicine and Hygiene, 2003, 69, 200-5.	0.6	89
39	Additional Selection for Insecticide Resistance in Urban Malaria Vectors: DDT Resistance in Anopheles arabiensis from Bobo-Dioulasso, Burkina Faso. PLoS ONE, 2012, 7, e45995.	1.1	88
40	Identification of Cryptic Anopheles Mosquito Species by Molecular Protein Profiling. PLoS ONE, 2013, 8, e57486.	1.1	85
41	The Spread of Aedes albopictus in Metropolitan France: Contribution of Environmental Drivers and Human Activities and Predictions for a Near Future. PLoS ONE, 2015, 10, e0125600.	1.1	85
42	Habitat suitability and ecological niche profile of major malaria vectors in Cameroon. Malaria Journal, 2009, 8, 307.	0.8	84
43	Larval Development of the Molecular Forms of <i>Anopheles gambiae</i> (Diptera: Culicidae) in Different Habitats: A Transplantation Experiment. Journal of Medical Entomology, 2005, 42, 548-553.	0.9	81
44	Evolutionary studies of malaria vectors. Trends in Parasitology, 2002, 18, 75-80.	1.5	78
45	Review: Improving our knowledge of male mosquito biology in relation to genetic control programmes. Acta Tropica, 2014, 132, S2-S11.	0.9	78
46	A behavioral mechanism underlying ecological divergence in the malaria mosquito Anopheles gambiae. Behavioral Ecology, 2010, 21, 1087-1092.	1.0	76
47	INTRASPECIFIC NUCLEOTIDE VARIATION IN ANOPHELES GAMBIAE: NEW INSIGHTS INTO THE BIOLOGY OF MALARIA VECTORS. American Journal of Tropical Medicine and Hygiene, 2004, 71, 795-802.	0.6	76
48	Localization of Candidate Regions Maintaining a Common Polymorphic Inversion (2La) in Anopheles gambiae. PLoS Genetics, 2007, 3, e217.	1.5	75
49	Geographic and ecological distribution of the dengue and chikungunya virus vectors Aedes aegypti and Aedes albopictus in three major Cameroonian towns. Medical and Veterinary Entomology, 2010, 24, 132-141.	0.7	74
50	Population genetic structure of Plasmodium falciparum in the two main African vectors, Anopheles gambiae and Anopheles funestus. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7987-7992.	3.3	73
51	First report of knockdown mutations in the malaria vector Anopheles gambiae from Cameroon. American Journal of Tropical Medicine and Hygiene, 2006, 74, 795-7.	0.6	73
52	Genetic Structure of the Tiger Mosquito, Aedes albopictus, in Cameroon (Central Africa). PLoS ONE, 2011, 6, e20257.	1.1	72
53	Species and Populations of the <1>Anopheles gambiae 1 Complex in Cameroon with Special Emphasis on Chromosomal and Molecular Forms of <1>Anopheles gambiae 1 s.s Journal of Medical Entomology, 2005, 42, 998-1005.	0.9	71
54	Malaria vectors and urbanization in the equatorial forest region of south Cameroon. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2005, 99, 347-354.	0.7	69

#	Article	IF	CITATIONS
55	Trends in DDT and pyrethroid resistance in Anopheles gambiaes.s. populations from urban and agro-industrial settings in southern Cameroon. BMC Infectious Diseases, 2009, 9, 163.	1.3	69
56	High Malaria Transmission Intensity Due to <i>Anopheles funestus</i> (Diptera: Culicidae) in a Village of Savannah–Forest Transition Area in Cameroon. Journal of Medical Entomology, 2004, 41, 901-905.	0.9	68
57	Mixed Swarms of the Molecular M and S Forms of <i>Anopheles gambiae</i> (Diptera: Culicidae) in Sympatric Area from Burkina Faso. Journal of Medical Entomology, 2006, 43, 480-483.	0.9	68
58	KDR Mutation, a Genetic Marker to Assess Events of Introgression Between the Molecular M and S Forms of <i>Anopheles gambiae</i> (Diptera: Culicidae) in the Tropical Savannah Area of West Africa. Journal of Medical Entomology, 2003, 40, 195-198.	0.9	67
59	MOLECULAR KARYOTYPING OF THE 2LA INVERSION IN ANOPHELES GAMBIAE. American Journal of Tropical Medicine and Hygiene, 2007, 76, 334-339.	0.6	67
60	Distribution of insensitive acetylcholinesterase (<i>ace</i> â€ <i>1</i> ^{<i>R</i>}) in <i>Anopheles gambiae</i> s.l. populations from Burkina Faso (West Africa). Tropical Medicine and International Health, 2009, 14, 396-403.	1.0	64
61	Molecular identification of the Anopheles nili group of African malaria vectors. Medical and Veterinary Entomology, 2003, 17, 67-74.	0.7	62
62	Patterns of sugar feeding and host plant preferences in adult males of An. gambiae (Diptera:) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 462
63	Chromosomal Inversions, Natural Selection and Adaptation in the Malaria Vector Anopheles funestus. Molecular Biology and Evolution, 2011, 28, 745-758.	3.5	62
64	Chromosomal plasticity and evolutionary potential in the malaria vector Anopheles gambiae sensu stricto: insights from three decades of rare paracentric inversions. BMC Evolutionary Biology, 2008, 8, 309.	3.2	60
65	Mixed Swarms of the Molecular M and S Forms of <i>Anopheles gambiae</i> (Diptera: Culicidae) in Sympatric Area from Burkina Faso. Journal of Medical Entomology, 2006, 43, 480-483.	0.9	59
66	Autochthonous Chikungunya Transmission and Extreme Climate Events in Southern France. PLoS Neglected Tropical Diseases, 2015, 9, e0003854.	1.3	59
67	Current and future distribution of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in WHO Eastern Mediterranean Region. International Journal of Health Geographics, 2018, 17, 4.	1.2	58
68	Patterns of Genomic Differentiation between Ecologically Differentiated M and S Forms of Anopheles gambiae in West and Central Africa. Genome Biology and Evolution, 2012, 4, 1202-1212.	1.1	57
69	Evidence for carry-over effects of predator exposure on pathogen transmission potential. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20152430.	1.2	56
70	A new species in the major malaria vector complex sheds light on reticulated species evolution. Scientific Reports, 2019, 9, 14753.	1.6	56
71	malERA: An updated research agenda for insecticide and drug resistance in malaria elimination and eradication. PLoS Medicine, 2017, 14, e1002450.	3.9	55
72	Population dynamics of Anopheles gambiae s.l. in Bobo-Dioulasso city: bionomics, infection rate and susceptibility to insecticides. Parasites and Vectors, 2012, 5, 127.	1.0	54

#	Article	IF	CITATIONS
73	Plant-Mediated Effects on Mosquito Capacity to Transmit Human Malaria. PLoS Pathogens, 2016, 12, e1005773.	2.1	54
74	Intraspecific nucleotide variation in Anopheles gambiae: new insights into the biology of malaria vectors. American Journal of Tropical Medicine and Hygiene, 2004, 71, 795-802.	0.6	54
75	Association Mapping of Insecticide Resistance in Wild Anopheles gambiae Populations: Major Variants Identified in a Low-Linkage Disequilbrium Genome. PLoS ONE, 2010, 5, e13140.	1.1	53
76	Description and Bionomics of <i>Anopheles</i> (<i>Cellia</i>) <i>ovengensis</i> (Diptera: Culicidae), a New Malaria Vector Species of the <i>Anopheles nili</i> Group from South Cameroon. Journal of Medical Entomology, 2004, 41, 561-568.	0.9	52
77	Chromosomal and environmental determinants of morphometric variation in natural populations of the malaria vector Anopheles funestus in Cameroon. Infection, Genetics and Evolution, 2011, 11, 940-947.	1.0	51
78	Chromosome inversions and ecological plasticity in the main African malaria mosquitoes. Evolution; International Journal of Organic Evolution, 2017, 71, 686-701.	1.1	51
79	Larval Development of the Molecular Forms of <i>Anopheles gambiae</i> (Diptera: Culicidae) in Different Habitats: A Transplantation Experiment. Journal of Medical Entomology, 2005, 42, 548-553.	0.9	50
80	Effects of Age and Size on <i>Anopheles gambiae</i> s.s. Male Mosquito Mating Success. Journal of Medical Entomology, 2013, 50, 285-293.	0.9	50
81	Natural swarming behaviour of the molecular M form of Anopheles gambiae. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2003, 97, 713-716.	0.7	49
82	Behavioural responses of Anopheles gambiae sensu stricto M and S molecular form larvae to an aquatic predator in Burkina Faso. Parasites and Vectors, 2012, 5, 65.	1.0	49
83	Gene Flow Between Chromosomal Forms of the Malaria Vector Anopheles funestus in Cameroon, Central Africa, and Its Relevance in Malaria Fighting. Genetics, 2005, 169, 301-311.	1.2	48
84	Molecular karyotyping of the 2La inversion in Anopheles gambiae. American Journal of Tropical Medicine and Hygiene, 2007, 76, 334-9.	0.6	48
85	The distribution of insecticide resistance in Anopheles gambiae s.l. populations from Cameroon: an update. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2009, 103, 1127-1138.	0.7	47
86	Potential of <i>Aedes albopictus</i> as a bridge vector for enzootic pathogens at the urban-forest interface in Brazil. Emerging Microbes and Infections, 2018, 7, 1-8.	3.0	47
87	First report of the oriental mosquito Aedes albopictus on the West African island of Bioko, Equatorial Guinea. Medical and Veterinary Entomology, 2003, 17, 343-346.	0.7	46
88	Differential gene expression in incipient species of <i>Anopheles gambiae</i> . Molecular Ecology, 2008, 17, 2491-2504.	2.0	46
89	Bionomics of Anopheline species and malaria transmission dynamics along an altitudinal transect in Western Cameroon. BMC Infectious Diseases, 2010, 10, 119.	1.3	46
90	Kdr-based insecticide resistance in Anopheles gambiae s.s populations in Cameroon: spread of the L1014F and L1014S mutations. BMC Research Notes, 2011, 4, 463.	0.6	46

#	Article	IF	CITATIONS
91	Swarming behaviour in natural populations of Anopheles gambiae and An. coluzzii: Review of 4 years survey in rural areas of sympatry, Burkina Faso (West Africa). Acta Tropica, 2014, 132, S42-S52.	0.9	46
92	SNP discovery and molecular evolution in Anopheles gambiae, with special emphasis on innate immune system. BMC Genomics, 2008, 9, 227.	1.2	44
93	Insecticide resistance in Anopheles gambiae from south-western Chad, Central Africa. Malaria Journal, 2008, 7, 192.	0.8	42
94	Population structure of the malaria vector Anopheles funestus in Senegal based on microsatellite and cytogenetic data. Insect Molecular Biology, 2004, 13, 251-258.	1.0	41
95	Molecular Evolution of Immune Genes in the Malaria Mosquito Anopheles gambiae. PLoS ONE, 2009, 4, e4549.	1.1	41
96	Geographic Distribution and Breeding Site Preference of <1>Aedes albopictus 1 and <1>Aedes aegypti 1 (Diptera: Culicidae) in Cameroon, Central Africa. Journal of Medical Entomology, 2005, 42, 726-731.	0.9	40
97	Efficacy of bifenthrin-impregnated bednets against Anopheles funestus and pyrethroid-resistant Anopheles gambiae in North Cameroon. Malaria Journal, 2006, 5, 77.	0.8	40
98	Morphological and genetic variability within Aedes aegypti in Niakhar, Senegal. Infection, Genetics and Evolution, 2010, 10, 473-480.	1.0	40
99	Mosquitoes (Diptera: Culicidae) in Mauritania: a review of their biodiversity, distribution and medical importance. Parasites and Vectors, 2017, 10, 35.	1.0	40
100	Molecular differentiation of three closely related members of the mosquito species complex, Anopheles moucheti, by mitochondrial and ribosomal DNA polymorphism. Medical and Veterinary Entomology, 2007, 21, 177-182.	0.7	39
101	Dissecting functional components of reproductive isolation among closely related sympatric species of the <i>Anopheles gambiae</i> complex. Evolutionary Applications, 2017, 10, 1102-1120.	1.5	39
102	Malaria transmission and rice cultivation in Lagdo, northern Cameroon. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2008, 102, 352-359.	0.7	38
103	Genetic population structure of Anopheles gambiae in Equatorial Guinea. Malaria Journal, 2007, 6, 137.	0.8	37
104	Assortative mating in mixed swarms of the mosquito <i>Anopheles gambiae s.s</i> . M and S molecular forms, in Burkina Faso, West Africa. Medical and Veterinary Entomology, 2013, 27, 298-312.	0.7	37
105	Natural <i>Wolbachia</i> infections are common in the major malaria vectors in Central Africa. Evolutionary Applications, 2019, 12, 1583-1594.	1.5	36
106	The molecular evolution of four anti-malarial immune genes in the Anopheles gambiae species complex. BMC Evolutionary Biology, 2008, 8, 79.	3.2	35
107	Population genetic structure of the malaria vector Anopheles nili in sub-Saharan Africa. Malaria Journal, 2010, 9, 161.	0.8	34
108	Sterile Insect Technique (SIT) against Aedes Species Mosquitoes: A Roadmap and Good Practice Framework for Designing, Implementing and Evaluating Pilot Field Trials. Insects, 2021, 12, 191.	1.0	34

#	Article	IF	CITATIONS
109	Malaria vectors and transmission dynamics in Goulmoun, a rural city in south-western Chad. BMC Infectious Diseases, 2009, 9, 71.	1.3	33
110	Polymorphism of intronâ€1 in the voltageâ€gated sodium channel gene of <i>Anopheles gambiae</i> s.s. populations from Cameroon with emphasis on insecticide knockdown resistance mutations. Molecular Ecology, 2009, 18, 3076-3086.	2.0	33
111	Novel insights into the metabolic and biochemical underpinnings assisting dry-season survival in female malaria mosquitoes of the Anopheles gambiae complex. Journal of Insect Physiology, 2014, 70, 102-116.	0.9	33
112	Gene Flow Between Domestic and Sylvan Populations of <i>Aedes aegypti</i> (Diptera:) Tj ETQq0 0 C) rgBT /Ove 0.9	erlock 10 Tf 50
113	Polymorphism at the defensin gene in the Anopheles gambiae complex: Testing different selection hypotheses. Infection, Genetics and Evolution, 2007, 7, 285-292.	1.0	30
114	First report of the L1014S kdr mutation in wild populations of Anopheles gambiae M and S molecular forms in Burkina Faso (West Africa). Acta Tropica, 2013, 125, 123-127.	0.9	30
115	Trapping the Tiger: Efficacy of the Novel BG-Sentinel 2 With Several Attractants and Carbon Dioxide for Collecting <i>Aedes albopictus</i> (Diptera: Culicidae) in Southern France. Journal of Medical Entomology, 2016, 53, 460-465.	0.9	30
116	High Genetic Differentiation between the M and S Molecular Forms of Anopheles gambiae in Africa. PLoS ONE, 2008, 3, e1968.	1.1	30
117	Geographic population structure of the <scp>A</scp> frican malaria vector <i><scp>A</scp>nopheles gambiae</i> suggests a role for the forestâ€savannah biome transition as a barrier to gene flow. Evolutionary Applications, 2013, 6, 910-924.	1.5	29
118	Effect of three larval diets on larval development and male sexual performance of Anopheles gambiae s.s Acta Tropica, 2014, 132, S96-S101.	0.9	29
119	Patterns of Selection in Anti-Malarial Immune Genes in Malaria Vectors: Evidence for Adaptive Evolution in LRIM1 in Anopheles arabiensis. PLoS ONE, 2007, 2, e793.	1.1	28
120	Occurrence of natural Anopheles arabiensis swarms in an urban area of Bobo-Dioulasso city, Burkina Faso, West Africa. Acta Tropica, 2014, 132, S35-S41.	0.9	28
121	Population structure of the malaria vector Anopheles moucheti in the equatorial forest region of Africa. Malaria Journal, 2008, 7, 120.	0.8	26
122	Seasonal variation in wing size and shape between geographic populations of the malaria vector, Anopheles coluzzii in Burkina Faso (West Africa). Acta Tropica, 2015, 143, 79-88.	0.9	26
123	Distribution and larval habitat characterization of Anopheles moucheti, Anopheles nili, and other malaria vectors in river networks of southern Cameroon. Acta Tropica, 2009, 112, 270-276.	0.9	25
124	Isolation and characterization of microsatellite DNA markers in the malaria vector Anopheles funestus. Molecular Ecology Notes, 2002, 2, 498-500.	1.7	24
125	Metabolomic and Ecdysteroid Variations in <i>Anopheles gambiae</i> s.l. Mosquitoes Exposed to the Stressful Conditions of the Dry Season in Burkina Faso, West Africa. Physiological and Biochemical Zoology, 2014, 87, 486-497.	0.6	24
126	Exploring Proteins in Anopheles gambiae Male and Female Antennae through MALDI Mass Spectrometry Profiling. PLoS ONE, 2008, 3, e2822.	1.1	24

#	Article	IF	CITATIONS
127	Impact of insecticide-treated bed nets implementation on the genetic structure of Anopheles arabiensis in an area of irrigated rice fields in the Sahelian region of Cameroon. Molecular Ecology, 2005, 14, 3683-3693.	2.0	23
128	Divergence in threat sensitivity among aquatic larvae of cryptic mosquito species. Journal of Animal Ecology, 2014, 83, 702-711.	1.3	23
129	No evidence for manipulation of Anopheles gambiae, An. coluzzii and An. arabiensis host preference by Plasmodium falciparum. Scientific Reports, 2017, 7, 9415.	1.6	23
130	Physiology and development of the M and S molecular forms of <i>Anopheles gambiae</i> in Burkina Faso (West Africa). Medical and Veterinary Entomology, 2012, 26, 447-454.	0.7	22
131	Multigene Phylogenetics Reveals Temporal Diversification of Major African Malaria Vectors. PLoS ONE, 2014, 9, e93580.	1.1	22
132	EFFECT OF INFECTION BY PLASMODIUM FALCIPARUM ON THE MELANIZATION IMMUNE RESPONSE OF ANOPHELES GAMBIAE. American Journal of Tropical Medicine and Hygiene, 2007, 76, 475-480.	0.6	22
133	Insertion polymorphism of transposable elements and population structure of Anopheles gambiae M and S molecular forms in Cameroon. Molecular Ecology, 2006, 16, 441-452.	2.0	21
134	Spatial genetic structure and restricted gene flow in bed bugs (Cimex lectularius) populations in France. Infection, Genetics and Evolution, 2015, 34, 236-243.	1.0	21
135	Malaria in three epidemiological strata in Mauritania. Malaria Journal, 2016, 15, 204.	0.8	21
136	Genomeâ€wide analysis of transcriptomic divergence between laboratory colony and field <i>Anopheles gambiae</i> mosquitoes of the M and S molecular forms. Insect Molecular Biology, 2010, 19, 695-705.	1.0	20
137	Cytogenetic map for Anopheles nili: Application for population genetics and comparative physical mapping. Infection, Genetics and Evolution, 2011, 11, 746-754.	1.0	19
138	Strategic Approach, Advances, and Challenges in the Development and Application of the SIT for Area-Wide Control of Aedes albopictus Mosquitoes in Reunion Island. Insects, 2020, 11, 770.	1.0	19
139	An ecological and digital epidemiology analysis on the role of human behavior on the 2014 Chikungunya outbreak in Martinique. Scientific Reports, 2017, 7, 5967.	1.6	18
140	POPULATION STRUCTURE OF ANOPHELES ARABIENSIS ON LA RÉUNION ISLAND, INDIAN OCEAN. American Journal of Tropical Medicine and Hygiene, 2005, 73, 1077-1082.	0.6	18
141	PCR-based karyotyping of Anopheles gambiae inversion 2Rj identifies the BAMAKO chromosomal form. Malaria Journal, 2007, 6, 133.	0.8	17
142	<i>Aedes aegypti</i> (Diptera: Culicidae) in Mauritania: First Report on the Presence of the Arbovirus Mosquito Vector in Nouakchott. Journal of Medical Entomology, 2015, 52, 730-733.	0.9	17
143	Morphological changes in the spiracles of Anopheles gambiae s.l (Diptera) as a response to the dry season conditions in Burkina Faso (West Africa). Parasites and Vectors, 2016, 9, 11.	1.0	17
144	Spatially Explicit Analyses of Anopheline Mosquitoes Indoor Resting Density: Implications for Malaria Control. PLoS ONE, 2012, 7, e31843.	1.1	16

#	Article	IF	CITATIONS
145	Exploring the origin and degree of genetic isolation of <i>Anopheles gambiae</i> from the islands of SA£o TomA© and PrAncipe, potential sites for testing transgenicâ€based vector control. Evolutionary Applications, 2008, 1, 631-644.	1.5	15
146	Anopheles Immune Genes and Amino Acid Sites Evolving Under the Effect of Positive Selection. PLoS ONE, 2010, 5, e8885.	1.1	15
147	Oasis Malaria, Northern Mauritania1. Emerging Infectious Diseases, 2019, 25, 273-280.	2.0	15
148	A preliminary test of the protective efficacy of permethrin-treated bed nets in an area of Anopheles gambiae metabolic resistance to pyrethroids in north Cameroon. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2007, 101, 881-884.	0.7	14
149	Climate change and altitudinal structuring of malaria vectors in south-western Cameroon: their relation to malaria transmission. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2010, 104, 453-460.	0.7	14
150	Larval Habitats Characterization and Species Composition of Anopheles Mosquitoes in Tunisia, with Particular Attention to Anopheles maculipennis Complex. American Journal of Tropical Medicine and Hygiene, 2015, 92, 653-659.	0.6	14
151	Distribution of Plasmodium falciparum gametocytes and malaria-attributable fraction of fever episodes along an altitudinal transect in Western Cameroon. Malaria Journal, 2015, 14, 96.	0.8	14
152	Monitoring Dry Season Persistence of <i>Anopheles gambiae</i> s.l. Populations in a Contained Semi-Field System in Southwestern Burkina Faso, West Africa. Journal of Medical Entomology, 2016, 53, 130-138.	0.9	14
153	Morphological variability in the malaria vector, Anopheles moucheti, is not indicative of speciation: evidences from sympatric south Cameroon populations. Infection, Genetics and Evolution, 2002, 2, 69-72.	1.0	13
154	Larvae of cryptic species of <i>Anopheles gambiae</i> respond differently to cues of predation risk. Freshwater Biology, 2013, 58, 1178-1189.	1.2	13
155	Supporting and strengthening research on urban health interventions for the prevention and control of vector-borne and other infectious diseases of poverty: scoping reviews and research gap analysis. Infectious Diseases of Poverty, 2018, 7, 94.	1.5	13
156	Optimization of breeding output for larval stage of <i>Anopheles gambiae</i> (Diptera: Culicidae): prospects for the creation and maintenance of laboratory colony from wild isolates. Bulletin of Entomological Research, 2011, 101, 259-269.	0.5	12
157	Cytogenetic analysis of Anopheles ovengensis revealed high structural divergence of chromosomes in the Anopheles nili group. Infection, Genetics and Evolution, 2013, 16, 341-348.	1.0	12
158	Data-driven and interpretable machine-learning modeling to explore the fine-scale environmental determinants of malaria vectors biting rates in rural Burkina Faso. Parasites and Vectors, 2021, 14, 345.	1.0	12
159	Improving the population genetics toolbox for the study of the African malaria vector Anopheles nili: microsatellite mapping to chromosomes. Parasites and Vectors, 2011, 4, 202.	1.0	11
160	Cryptic Genetic Diversity within the Anopheles nili group of Malaria Vectors in the Equatorial Forest Area of Cameroon (Central Africa). PLoS ONE, 2013, 8, e58862.	1.1	11
161	Comparative physiological plasticity to desiccation in distinct populations of the malarial mosquito Anopheles coluzzii. Parasites and Vectors, 2016, 9, 565.	1.0	11
162	MULTILOCUS ENZYME ELECTROPHORESIS SUPPORTS SPECIATION WITHIN THE ANOPHELES NILI GROUP OF MALARIA VECTORS IN CAMEROON. American Journal of Tropical Medicine and Hygiene, 2006, 75, 656-658.	0.6	11

#	Article	IF	CITATIONS
163	Population genetic structure of the malaria vector Anopheles moucheti in south Cameroon forest region. Acta Tropica, 2007, 101, 61-68.	0.9	10
164	Multilocus enzyme electrophoresis supports speciation within the Anopheles nili group of malaria vectors in Cameroon. American Journal of Tropical Medicine and Hygiene, 2006, 75, 656-8.	0.6	10
165	A multiplex PCR to differentiate the two sibling species of mosquitoes Ochlerotatus detritus and Oc. coluzzii and evidence for further genetic heterogeneity within the Detritus complex. Infection, Genetics and Evolution, 2014, 28, 676-680.	1.0	9
166	Seasonal abundance, blood meal sources and insecticide susceptibility in major anopheline malaria vectors from southern Mauritania. Parasites and Vectors, 2018, 11, 232.	1.0	9
167	Polymorphic chromosomal inversions in <i>Anopheles moucheti</i> , a major malaria vector in Central Africa. Medical and Veterinary Entomology, 2014, 28, 337-340.	0.7	8
168	The niche reduction approach: an opportunity for optimal control of infectious diseases in low-income countries?. BMC Public Health, 2014, 14, 753.	1.2	8
169	New Insights into the Population Structure of Anopheles gambiae s.s. in the Gulf of Guinea Islands Revealed by Herves Transposable Elements. PLoS ONE, 2013, 8, e62964.	1.1	8
170	Highlights on Anopheles nili and Anopheles moucheti, Malaria Vectors in Africa. , 0, , .		7
171	First report of Anopheles (Cellia) multicolor during a study of tolerance to salinity of Anopheles arabiensis larvae in Nouakchott, Mauritania. Parasites and Vectors, 2020, 13, 522.	1.0	7
172	Design and implementation of a mosquito database through an entomological ontology. Bioinformatics, 2004, 20, 2205-2211.	1.8	6
173	Combining two-dimensional gel electrophoresis and metabolomic data in support of dry-season survival in the two main species of the malarial mosquito Anopheles gambiae. Data in Brief, 2015, 5, 255-268.	0.5	6
174	Living with predators at the larval stage has differential long-lasting effects on adult life history and physiological traits in two anopheline mosquito species. Journal of Insect Physiology, 2021, 131, 104234.	0.9	6
175	Effects of insemination and blood-feeding on locomotor activity of wild-derived females of the malaria mosquito Anopheles coluzzii. Parasites and Vectors, 2021, 14, 457.	1.0	6
176	Imported chikungunya cases in an area newly colonised by Aedes albopictus: mathematical assessment of the best public health strategy. Eurosurveillance, 2016, 21, .	3.9	6
177	Field evidence for manipulation of mosquito host selection by the human malaria parasite, Plasmodium falciparum. , 0, 1, .		6
178	Larval competition between An. coluzzii and An. gambiae in insectary and semi-field conditions in Burkina Faso. Acta Tropica, 2014, 130, 155-161.	0.9	5
179	Life history consequences of larval foraging depth differ between two competing <scp>A</scp> nopheles mosquitoes. Ecological Entomology, 2015, 40, 143-149.	1.1	5
180	Is Perceived Exposure to Mosquitoes Associated with Actual Exposure? Results from Studies in High-Risk and Low-Risk Geographic Areas. American Journal of Tropical Medicine and Hygiene, 2019, 101, 976-979.	0.6	5

#	Article	IF	CITATIONS
181	Design of a Two-level Adaptive Multi-Agent System for Malaria Vectors driven by an ontology. BMC Medical Informatics and Decision Making, 2007, 7, 19.	1.5	4
182	Erratum. Bioinformatics, 2005, 21, 2797-2802.	1.8	3
183	Advancing vector biology research: a community survey for future directions, research applications and infrastructure requirements. Pathogens and Global Health, 2016, 110, 164-172.	1.0	3
184	Cancer and mosquitoes – An unsuspected close connection. Science of the Total Environment, 2020, 743, 140631.	3.9	3
185	A PCR-RFLP method for genotyping of inversion 2Rc in Anopheles coluzzii. Parasites and Vectors, 2021, 14, 174.	1.0	3
186	Low Malaria Transmission in Rosso, an Irrigated Rice-Growing Area in Mauritania. Parasitologia, 2021, 1, 257-268.	0.6	3
187	Optimizing public health strategies in low-income countries: epidemiology, ecology and evolution for the control of malaria. , 2018, , .		1
188	Genetic polymorphism at an odorant receptor gene (Or39) among mosquitoes of the Anopheles gambiae complex in Senegal (West Africa). BMC Research Notes, 2014, 7, 321.	0.6	0
189	Optimizing public health strategies in low-income countries: the challegens to apply the scientific knowledge for disease control and for which diseases. , 2018, , .		0
190	Use of different cotton pest control strategies (conventional, organic and transgenic) had no impact on insecticide resistance in <i>Anopheles gambiae s.l.</i> populations in Burkina Faso, West Africa. International Journal of Pest Management, 0, , 1-12.	0.9	0