

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3770348/publications.pdf Version: 2024-02-01

		14644	15716
122	21,704	66	125
papers	citations	h-index	g-index
127	127	127	16322
all docs	docs citations	times ranked	citing authors

Ііл 7нн

#	Article	IF	CITATIONS
1	3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics, 2016, 10, 393-398.	15.6	1,669
2	Solar-driven interfacial evaporation. Nature Energy, 2018, 3, 1031-1041.	19.8	1,347
3	Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Science Advances, 2016, 2, e1501227.	4.7	1,025
4	Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13953-13958.	3.3	971
5	Mushrooms as Efficient Solar Steamâ€Generation Devices. Advanced Materials, 2017, 29, 1606762.	11.1	922
6	Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nature Energy, 2019, 4, 864-873.	19.8	736
7	Tailoring Graphene Oxideâ€Based Aerogels for Efficient Solar Steam Generation under One Sun. Advanced Materials, 2017, 29, 1604031.	11.1	711
8	Challenges and Recent Progress in the Development of Si Anodes for Lithiumâ€lon Battery. Advanced Energy Materials, 2017, 7, 1700715.	10.2	709
9	Flexible and Salt Resistant Janus Absorbers by Electrospinning for Stable and Efficient Solar Desalination. Advanced Energy Materials, 2018, 8, 1702884.	10.2	635
10	Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nature Chemistry, 2018, 10, 924-931.	6.6	558
11	All-perovskite tandem solar cells with improved grain surface passivation. Nature, 2022, 603, 73-78.	13.7	544
12	Enhancement of Interfacial Solar Vapor Generation by Environmental Energy. Joule, 2018, 2, 1331-1338.	11.7	507
13	All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nature Energy, 2020, 5, 870-880.	19.8	497
14	Poly(dimethylsiloxane) Thin Film as a Stable Interfacial Layer for Highâ€Performance Lithiumâ€Metal Battery Anodes. Advanced Materials, 2017, 29, 1603755.	11.1	454
15	Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nature Nanotechnology, 2021, 16, 153-158.	15.6	405
16	Three-dimensional artificial transpiration for efficient solar waste-water treatment. National Science Review, 2018, 5, 70-77.	4.6	363
17	A water lily–inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Science Advances, 2019, 5, eaaw7013.	4.7	335
18	Simultaneous Contact and Grainâ€Boundary Passivation in Planar Perovskite Solar Cells Using SnO ₂ â€KCl Composite Electron Transport Layer. Advanced Energy Materials, 2020, 10, 1903083.	10.2	323

#	Article	IF	CITATIONS
19	Joint Charge Storage for Highâ€Rate Aqueous Zinc–Manganese Dioxide Batteries. Advanced Materials, 2019, 31, e1900567.	11.1	299
20	Over 10Âkg mâ^'2 hâ^'1 Evaporation Rate Enabled by a 3D Interconnected Porous Carbon Foam. Joule, 2020, 4, 928-937.	11.7	263
21	The revival of thermal utilization from the Sun: interfacial solar vapor generation. National Science Review, 2019, 6, 562-578.	4.6	260
22	Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits. Nature Communications, 2019, 10, 1896.	5.8	256
23	Development and Evolution of the System Structure for Highly Efficient Solar Steam Generation from Zero to Three Dimensions. Advanced Functional Materials, 2019, 29, 1903255.	7.8	249
24	Measuring Conversion Efficiency of Solar Vapor Generation. Joule, 2019, 3, 1798-1803.	11.7	246
25	Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids. Nature Biomedical Engineering, 2020, 4, 704-716.	11.6	243
26	Synthesis, Characterization, Physical Properties, and OLED Application of Single BN-Fused Perylene Diimide. Journal of Organic Chemistry, 2015, 80, 196-203.	1.7	227
27	PVDF/Palygorskite Nanowire Composite Electrolyte for 4 V Rechargeable Lithium Batteries with High Energy Density. Nano Letters, 2018, 18, 6113-6120.	4.5	227
28	Rational Design of a Ni ₃ N _{0.85} Electrocatalyst to Accelerate Polysulfide Conversion in Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 6673-6682.	7.3	212
29	Interfacial Solar Steam Generation Enables Fastâ€Responsive, Energyâ€Efficient, and Lowâ€Cost Offâ€Grid Sterilization. Advanced Materials, 2018, 30, e1805159.	11.1	208
30	Storage and Recycling of Interfacial Solar Steam Enthalpy. Joule, 2018, 2, 2477-2484.	11.7	205
31	Tin and Mixed Lead–Tin Halide Perovskite Solar Cells: Progress and their Application in Tandem Solar Cells. Advanced Materials, 2020, 32, e1907392.	11.1	203
32	Subambient daytime radiative cooling textile based on nanoprocessed silk. Nature Nanotechnology, 2021, 16, 1342-1348.	15.6	178
33	Dual functional asymmetric plasmonic structures for solar water purification and pollution detection. Nano Energy, 2018, 51, 451-456.	8.2	165
34	Direct Conversion of Perovskite Thin Films into Nanowires with Kinetic Control for Flexible Optoelectronic Devices. Nano Letters, 2016, 16, 871-876.	4.5	164
35	A Polymerizationâ€Assisted Grain Growth Strategy for Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2020, 32, e1907769.	11.1	161
36	An Interfacial Solar Heating Assisted Liquid Sorbent Atmospheric Water Generator. Angewandte Chemie - International Edition, 2019, 58, 12054-12058.	7.2	152

#	Article	IF	CITATIONS
37	Combining Efficiency and Stability in Mixed Tin–Lead Perovskite Solar Cells by Capping Grains with an Ultrathin 2D Layer. Advanced Materials, 2020, 32, e1907058.	11.1	148
38	An Interfacial Solarâ€Driven Atmospheric Water Generator Based on a Liquid Sorbent with Simultaneous Adsorption–Desorption. Advanced Materials, 2019, 31, e1903378.	11.1	147
39	Molecular Interaction Regulates the Performance and Longevity of Defect Passivation for Metal Halide Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 20071-20079.	6.6	145
40	Topological insulators for thermoelectrics. Npj Quantum Materials, 2017, 2, .	1.8	143
41	Interlayer Lithium Plating in Au Nanoparticles Pillared Reduced Graphene Oxide for Lithium Metal Anodes. Advanced Functional Materials, 2018, 28, 1804133.	7.8	142
42	Towards high energy density lithium battery anodes: silicon and lithium. Chemical Science, 2019, 10, 7132-7148.	3.7	134
43	Efficient Ni ₂ Co ₄ P ₃ Nanowires Catalysts Enhance Ultrahigh‣oading Lithium–Sulfur Conversion in a Microreactor‣ike Battery. Advanced Functional Materials, 2020, 30, 1906661.	7.8	134
44	Transition metal-based layered double hydroxides for photo(electro)chemical water splitting: a mini review. Nanoscale, 2021, 13, 13593-13603.	2.8	133
45	Thermal Properties of Two Dimensional Layered Materials. Advanced Functional Materials, 2017, 27, 1604134.	7.8	130
46	A Nanoâ€shield Design for Separators to Resist Dendrite Formation in Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 6561-6566.	7.2	128
47	Temperature-Gated Thermal Rectifier for Active Heat Flow Control. Nano Letters, 2014, 14, 4867-4872.	4.5	126
48	Stable, high-performance sodium-based plasmonic devices in the nearÂinfrared. Nature, 2020, 581, 401-405.	13.7	125
49	Minimized lithium trapping by isovalent isomorphism for high initial Coulombic efficiency of silicon anodes. Science Advances, 2019, 5, eaax0651.	4.7	122
50	Scalable Production of Si Nanoparticles Directly from Low Grade Sources for Lithium-Ion Battery Anode. Nano Letters, 2015, 15, 5750-5754.	4.5	119
51	Bioinspired, Spineâ€Like, Flexible, Rechargeable Lithiumâ€Ion Batteries with High Energy Density. Advanced Materials, 2018, 30, e1704947.	11.1	109
52	Tailoring Aerogels and Related 3D Macroporous Monoliths for Interfacial Solar Vapor Generation. Advanced Functional Materials, 2020, 30, 1907234.	7.8	109
53	A high-performing single-stage invert-structured solar water purifier through enhanced absorption and condensation. Joule, 2021, 5, 1602-1612.	11.7	107
54	Precise Perforation and Scalable Production of Si Particles from Low-Grade Sources for High-Performance Lithium Ion Battery Anodes. Nano Letters, 2016, 16, 7210-7215.	4.5	105

#	Article	IF	CITATIONS
55	Fundamentals, Materials, and Applications for Daytime Radiative Cooling. Advanced Materials Technologies, 2020, 5, .	3.0	103
56	N,P-coordinated fullerene-like carbon nanostructures with dual active centers toward highly-efficient multi-functional electrocatalysis for CO ₂ RR, ORR and Zn-air battery. Journal of Materials Chemistry A, 2019, 7, 15271-15277.	5.2	99
57	Graphene oxide based materials for desalination. Carbon, 2019, 146, 320-328.	5.4	98
58	Highly Flexible Self-Powered Organolead Trihalide Perovskite Photodetectors with Gold Nanowire Networks as Transparent Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 23868-23875.	4.0	95
59	Hierarchically Designed Saltâ€Resistant Solar Evaporator Based on Donnan Effect for Stable and Highâ€Performance Brine Treatment. Advanced Functional Materials, 2021, 31, 2100025.	7.8	94
60	Plasmon-enhanced solar vapor generation. Nanophotonics, 2019, 8, 771-786.	2.9	91
61	Synergistic Tandem Solar Electricity-Water Generators. Joule, 2020, 4, 347-358.	11.7	91
62	Highly-sensitive optical organic vapor sensor through polymeric swelling induced variation of fluorescent intensity. Nature Communications, 2018, 9, 3799.	5.8	86
63	Vapor condensation with daytime radiative cooling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	86
64	High-yield solar-driven atmospheric water harvesting of metal–organic-framework-derived nanoporous carbon with fast-diffusion water channels. Nature Nanotechnology, 2022, 17, 857-863.	15.6	85
65	Protecting ice from melting under sunlight via radiative cooling. Science Advances, 2022, 8, eabj9756.	4.7	80
66	Interfacial Solar Vapor Generation: Materials and Structural Design. Accounts of Materials Research, 2021, 2, 198-209.	5.9	75
67	Persistent Radical Tetrathiafulvaleneâ€Based 2D Metalâ€Organic Frameworks and Their Application in Efficient Photothermal Conversion. Angewandte Chemie - International Edition, 2021, 60, 4789-4795.	7.2	74
68	Lowâ€dimensional metal halide perovskites and related optoelectronic applications. InformaÄnÃ- Materiály, 2020, 2, 341-378.	8.5	72
69	Electrodeposition Technologies for Liâ€Based Batteries: New Frontiers of Energy Storage. Advanced Materials, 2020, 32, e1903808.	11.1	70
70	Solution-Processed Monolithic All-Perovskite Triple-Junction Solar Cells with Efficiency Exceeding 20%. ACS Energy Letters, 2020, 5, 2819-2826.	8.8	69
71	CsSnI ₃ Solar Cells via an Evaporationâ€Assisted Solution Method. Solar Rrl, 2018, 2, 1700224.	3.1	68
72	Tinâ€Based Perovskite with Improved Coverage and Crystallinity through Tinâ€Fluorideâ€Assisted Heterogeneous Nucleation, Advanced Optical Materials, 2018, 6, 1700615	3.6	67

#	Article	IF	CITATIONS
73	Low-temperature processed inorganic hole transport layer for efficient and stable mixed Pb-Sn low-bandgap perovskite solar cells. Science Bulletin, 2019, 64, 1399-1401.	4.3	66
74	Exploring Peltier effect in organic thermoelectric films. Nature Communications, 2018, 9, 3586.	5.8	65
75	Simultaneous Purification and Perforation of Low-Grade Si Sources for Lithium-Ion Battery Anode. Nano Letters, 2015, 15, 7742-7747.	4.5	62
76	Li ⁺ â€Containing, Continuous Silica Nanofibers for High Li ⁺ Conductivity in Composite Polymer Electrolyte. Small, 2019, 15, e1902729.	5.2	58
77	A scalable fish-school inspired self-assembled particle system for solar-powered water-solute separation. National Science Review, 2021, 8, nwab065.	4.6	58
78	Nanopurification of silicon from 84% to 99.999% purity with a simple and scalable process. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13473-13477.	3.3	56
79	Cation Dynamics Governed Thermal Properties of Lead Halide Perovskite Nanowires. Nano Letters, 2018, 18, 2772-2779.	4.5	55
80	"Lewis Base-Hungry―Amorphous–Crystalline Nickel Borate–Nickel Sulfide Heterostructures by In Situ Structural Engineering as Effective Bifunctional Electrocatalysts toward Overall Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 23896-23903.	4.0	53
81	Recent Progress in Daytime Radiative Cooling: Advanced Material Designs and Applications. Small Methods, 2022, 6, e2101379.	4.6	53
82	Omnidirectional and effective salt-rejecting absorber with rationally designed nanoarchitecture for efficient and durable solar vapour generation. Journal of Materials Chemistry A, 2018, 6, 22976-22986.	5.2	48
83	Interfacial Solar Steam/Vapor Generation for Heating and Cooling. Advanced Science, 2022, 9, e2104181.	5.6	42
84	Seedâ€induced Vertical Growth of 2D Bi ₂ O ₂ Se Nanoplates by Chemical Vapor Transport. Advanced Functional Materials, 2019, 29, 1906639.	7.8	39
85	Nanomaterials for the water-energy nexus. MRS Bulletin, 2019, 44, 59-66.	1.7	39
86	Scalable Production of the Silicon–Tin Yin-Yang Hybrid Structure with Graphene Coating for High Performance Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2017, 9, 15388-15393.	4.0	36
87	An Interfacial Solar Heating Assisted Liquid Sorbent Atmospheric Water Generator. Angewandte Chemie, 2019, 131, 12182-12186.	1.6	34
88	Hybrid Solar Absorber–Emitter by Coherenceâ€Enhanced Absorption for Improved Solar Thermophotovoltaic Conversion. Advanced Optical Materials, 2018, 6, 1800813.	3.6	33
89	Simultaneous Perforation and Doping of Si Nanoparticles for Lithium-Ion Battery Anode. ACS Applied Materials & Interfaces, 2017, 9, 44452-44457.	4.0	31
90	Simultaneously enhanced moisture tolerance and defect passivation of perovskite solar cells with cross-linked grain encapsulation. Journal of Energy Chemistry, 2021, 56, 455-462.	7.1	31

#	Article	IF	CITATIONS
91	Freeâ€&tanding Grapheneâ€Encapsulated Silicon Nanoparticle Aerogel as an Anode for Lithium Ion Batteries. ChemNanoMat, 2016, 2, 671-674.	1.5	29
92	Greener and higher conversion of esterification via interfacial photothermal catalysis. Nature Sustainability, 2022, 5, 348-356.	11.5	29
93	In operando plasmonic monitoring of electrochemical evolution of lithium metal. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11168-11173.	3.3	28
94	3D hollow reduced graphene oxide foam as a stable host for high-capacity lithium metal anodes. Materials Chemistry Frontiers, 2019, 3, 339-343.	3.2	26
95	Highly Conducting Organic–Inorganic Hybrid Copper Sulfides Cu _{<i>x</i>} C ₆ S ₆ (x=4 or 5.5): Ligandâ€Based Oxidationâ€Induced Chemical and Electronic Structure Modulation. Angewandte Chemie - International Edition, 2020, 59, 22602-22609.	7.2	26
96	Efficient thermal conductance in organometallic perovskite CH3NH3PbI3 films. Applied Physics Letters, 2016, 108, 081902.	1.5	22
97	Spectrally selective solar absorber with sharp and temperature dependent cut-off based on semiconductor nanowire arrays. Applied Physics Letters, 2017, 110, 201108.	1.5	20
98	Record Photocurrent Density over 26 mA cm â^'2 in Planar Perovskite Solar Cells Enabled by Antireflective Cascaded Electron Transport Layer. Solar Rrl, 2020, 4, 2000169.	3.1	17
99	Persistent Radical Tetrathiafulvaleneâ€Based 2D Metalâ€Organic Frameworks and Their Application in Efficient Photothermal Conversion. Angewandte Chemie, 2021, 133, 4839-4845.	1.6	17
100	Electrical Dynamic Switching of Magnetic Plasmon Resonance Based on Selective Lithium Deposition. Advanced Materials, 2020, 32, e2000058.	11.1	16
101	Impact of Stoichiometry and Fluorine Atoms on the Charge Transport of Perylene–F ₄ TCNQ. Journal of Physical Chemistry Letters, 2019, 10, 3376-3380.	2.1	15
102	Ethanol Assisted Transfer for Clean Assembly of 2D Building Blocks and Suspended Structures. Advanced Functional Materials, 2019, 29, 1902427.	7.8	14
103	A Nanoâ€shield Design for Separators to Resist Dendrite Formation in Lithiumâ€Metal Batteries. Angewandte Chemie, 2020, 132, 6623-6628.	1.6	14
104	Steering on Degrees of Freedom of 2D Van der Waals Heterostructures. Small Science, 2022, 2, 2100033.	5.8	13
105	Biases Characteristics Assessment of the Advanced Geosynchronous Radiation Imager (AGRI) Measurement on Board Fengyun–4A Geostationary Satellite. Remote Sensing, 2020, 12, 2871.	1.8	12
106	Molecule functionalization to facilitate electrocatalytic oxygen reduction on graphdiyne. Journal of Energy Chemistry, 2022, 65, 141-148.	7.1	11
107	Electrochemically driven dynamic plasmonics. Advanced Photonics, 2021, 3, .	6.2	10
108	Strong dependence of the vertical charge carrier mobility on the π–π stacking distance in molecule/graphene heterojunctions. Physical Chemistry Chemical Physics, 2020, 22, 13802-13807.	1.3	10

#	Article	IF	CITATIONS
109	Anomalous thermal anisotropy of two-dimensional nanoplates of vertically grown MoS2. Applied Physics Letters, 2017, 111, .	1.5	8
110	Tunable thermal conductivity in mesoporous silicon by slight porosity change. Applied Physics Letters, 2017, 111, .	1.5	8
111	Lithium-plasmon-based low-powered dynamic color display. National Science Review, 2023, 10, .	4.6	8
112	Reply to 'The merits of plasmonic desalination'. Nature Photonics, 2017, 11, 70-71.	15.6	7
113	The Antioxidant Activity and Catalytic Mechanism of Schiff Base Diphenylamines at Elevated Temperatures. Industrial & Engineering Chemistry Research, 2020, 59, 1031-1037.	1.8	7
114	Tuning the Ambipolar Character of Copolymers with Substituents: A Density Functional Theory Study. Journal of Physical Chemistry Letters, 2020, 11, 3928-3933.	2.1	6
115	Chemical structure modulation in conductive MOFs by adjusting the oxidation state of the ligand and introducing alkali metal ions. Chemical Communications, 2022, 58, 2702-2705.	2.2	6
116	Solar thermal energy conversion and utilization—New research horizon. EcoMat, 2022, 4, .	6.8	5
117	Sorption Energy Harvesting from Air for Smart Battery Thermal Management. ACS Central Science, 2020, 6, 1479-1481.	5.3	4
118	Highly Conducting Organic–Inorganic Hybrid Copper Sulfides Cu x C 6 S 6 (x=4 or 5.5): Ligandâ€Based Oxidationâ€Induced Chemical and Electronic Structure Modulation. Angewandte Chemie, 2020, 132, 22791-22798.	1.6	2
119	Materials Research at Nanjing University. Advanced Materials, 2020, 32, 1907498.	11.1	2
120	Thermoelectric properties of organic charge transfer salts from first-principles investigations: role of molecular packing and triiodide anions. Journal of Materials Chemistry A, 2022, 10, 4288-4299.	5.2	1
121	Two cations make the right layer. Nature Energy, 2022, 7, 570-571.	19.8	1
122	Self-inhibition effect of metal incorporation in nanoscaled semiconductors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	0