Gaolang Gong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/376997/publications.pdf

Version: 2024-02-01

103 5,816 papers citations

147566 31 h-index 72 g-index

105 all docs $\begin{array}{c} 105 \\ \text{docs citations} \end{array}$

105 times ranked 7889 citing authors

#	Article	IF	CITATIONS
1	Identify aberrant white matter microstructure in ASD, ADHD and other neurodevelopmental disorders: A meta-analysis of diffusion tensor imaging studies. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2022, 113, 110477.	2.5	32
2	Hypothalamic subregion abnormalities are related to body mass index in patients with sporadic amyotrophic lateral sclerosis. Journal of Neurology, 2022, 269, 2980-2988.	1.8	11
3	Callosal Fiber Length Scales with Brain Size According to Functional Lateralization, Evolution, and Development. Journal of Neuroscience, 2022, 42, 3599-3610.	1.7	9
4	Activation network mapping for integration of heterogeneous fMRI findings. Nature Human Behaviour, 2022, 6, 1417-1429.	6.2	16
5	Resting state differences between successful and unsuccessful restrained eaters. Brain Imaging and Behavior, 2021, 15, 906-916.	1.1	5
6	Interhemispheric Relationship of Genetic Influence on Human Brain Connectivity. Cerebral Cortex, 2021, 31, 77-88.	1.6	8
7	Associations between hemispheric asymmetry and schizophrenia-related risk genes in people with schizophrenia and people at a genetic high risk of schizophrenia. British Journal of Psychiatry, 2021, 219, 392-400.	1.7	5
8	Sex-related human brain asymmetry in hemispheric functional gradients. NeuroImage, 2021, 229, 117761.	2.1	29
9	Connectional asymmetry of the inferior parietal lobule shapes hemispheric specialization in humans, chimpanzees, and rhesus macaques. ELife, 2021, 10, .	2.8	23
10	Facial expression recognition: A meta-analytic review of theoretical models and neuroimaging evidence. Neuroscience and Biobehavioral Reviews, 2021, 127, 820-836.	2.9	27
11	Common and unique structural plasticity after left and right hemisphere stroke. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 3350-3364.	2.4	10
12	Structural properties of corpus callosum are associated differently with verbal creativity and visual creativity. Brain Structure and Function, 2021, 226, 2511-2521.	1.2	6
13	Neuroimaging Anomalies in Community-Dwelling Asymptomatic Adults With Very Early-Stage White Matter Hyperintensity. Frontiers in Aging Neuroscience, 2021, 13, 715434.	1.7	3
14	Hippocampal subfield and anterior-posterior segment volumes in patients with sporadic amyotrophic lateral sclerosis. Neurolmage: Clinical, 2021, 32, 102816.	1.4	6
15	Characterizing the hyper―and hypometabolism in temporal lobe epilepsy using multivariate machine learning. Journal of Neuroscience Research, 2021, 99, 3035-3046.	1.3	5
16	White Matter but not Gray Matter Volumes Are Associated with Cognition in Community-Dwelling Chinese Populations. Journal of Alzheimer's Disease, 2021, 84, 367-375.	1.2	6
17	Individualized Cortical Parcellation Based on Diffusion MRI Tractography. Cerebral Cortex, 2020, 30, 3198-3208.	1.6	14
18	Functional Integration Between the Two Brain Hemispheres: Evidence From the Homotopic Functional Connectivity Under Resting State. Frontiers in Neuroscience, 2020, 14, 932.	1.4	17

#	Article	IF	CITATIONS
19	Influences of the early family environment and long-term vocabulary development on the structure of white matter pathways: A longitudinal investigation. Developmental Cognitive Neuroscience, 2020, 42, 100767.	1.9	14
20	Altered brain white matter connectome in children and adolescents with prenatal alcohol exposure. Brain Structure and Function, 2020, 225, 1123-1133.	1.2	18
21	Neurobiological commonalities and distinctions among 3 major psychiatric disorders: a graph theoretical analysis of the structural connectome. Journal of Psychiatry and Neuroscience, 2020, 45, 15-22.	1.4	14
22	Effects of hypogonadism on brain development during adolescence in girls with Turner syndrome. Human Brain Mapping, 2019, 40, 4901-4911.	1.9	6
23	Decreased Gray-Matter Volume in Insular Cortex as a Correlate of Singers' Enhanced Sensorimotor Control of Vocal Production. Frontiers in Neuroscience, 2019, 13, 815.	1.4	13
24	Alterations in Cortical Thickness in Young Male Patients With Childhood-Onset Adult Growth Hormone Deficiency: A Morphometric MRI Study. Frontiers in Neuroscience, 2019, 13, 1134.	1.4	5
25	Cerebral Microbleeds Correlated with White Matter and Hippocampal Volumes in Community-Dwelling Populations. Journal of Alzheimer's Disease, 2019, 71, 559-567.	1.2	6
26	<p>Why Do Most Restrained Eaters Fail in Losing Weight?: Evidence from an fMRI Study</p> . Psychology Research and Behavior Management, 2019, Volume 12, 1127-1136.	1.3	5
27	Hemispheric Module-Specific Influence of the X Chromosome on White Matter Connectivity: Evidence from Girls with Turner Syndrome. Cerebral Cortex, 2019, 29, 4580-4594.	1.6	12
28	Network analysis reveals disrupted functional brain circuitry in drug-naive social anxiety disorder. NeuroImage, 2019, 190, 213-223.	2.1	78
29	Mapping Convergent and Divergent Cortical Thinning Patterns in Patients With Deficit and Nondeficit Schizophrenia. Schizophrenia Bulletin, 2019, 45, 211-221.	2.3	18
30	Anisotropy of anomalous diffusion improves the accuracy of differentiating low- and high-grade cerebral gliomas. Magnetic Resonance Imaging, 2018, 51, 14-19.	1.0	3
31	Connectivity of the ventral visual cortex is necessary for object recognition in patients. Human Brain Mapping, 2018, 39, 2786-2799.	1.9	6
32	Vocabulary growth rate from preschool to schoolâ€age years is reflected in the connectivity of the arcuate fasciculus in 14â€yearâ€old children. Developmental Science, 2018, 21, e12647.	1.3	21
33	The lateralized arcuate fasciculus in developmental pitch disorders among mandarin amusics: left for speech and right for music. Brain Structure and Function, 2018, 223, 2013-2024.	1.2	11
34	Alterations in white matter pathways underlying phonological and morphological processing in Chinese developmental dyslexia. Developmental Cognitive Neuroscience, 2018, 31, 11-19.	1.9	51
35	Individualized Prediction of Reading Comprehension Ability Using Gray Matter Volume. Cerebral Cortex, 2018, 28, 1656-1672.	1.6	77
36	Neural correlates of oral word reading, silent reading comprehension, and cognitive subcomponents. International Journal of Behavioral Development, 2018, 42, 342-356.	1.3	19

#	Article	IF	Citations
37	Aberrant development of the asymmetry between hemispheric brain white matter networks in autism spectrum disorder. European Neuropsychopharmacology, 2018, 28, 48-62.	0.3	30
38	Inside Back Cover: Cover Image, Volume 21, Issue 5. Developmental Science, 2018, 21, e12732.	1.3	0
39	The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features. Neurolmage, 2018, 178, 622-637.	2.1	241
40	The consequence of cerebral small vessel disease: Linking brain atrophy to motor impairment in the elderly. Human Brain Mapping, 2018, 39, 4452-4461.	1.9	30
41	Semantic representation in the white matter pathway. PLoS Biology, 2018, 16, e2003993.	2.6	19
42	White Matter Deficits Underlying the Impaired Consciousness Level in Patients with Disorders of Consciousness. Neuroscience Bulletin, 2018, 34, 668-678.	1.5	19
43	Developmental Changes in Topological Asymmetry Between Hemispheric Brain White Matter Networks from Adolescence to Young Adulthood. Cerebral Cortex, 2017, 27, bhw109.	1.6	41
44	A seed-based cross-modal comparison of brain connectivity measures. Brain Structure and Function, 2017, 222, 1131-1151.	1.2	24
45	Anomalous diffusion in cerebral glioma assessed using a fractional motion model. Magnetic Resonance in Medicine, 2017, 78, 1944-1949.	1.9	11
46	<i>ROBO1</i> polymorphisms, callosal connectivity, and reading skills. Human Brain Mapping, 2017, 38, 2616-2626.	1.9	13
47	How bilingualism protects the brain from aging: Insights from bimodal bilinguals. Human Brain Mapping, 2017, 38, 4109-4124.	1.9	33
48	Directional sensitivity of anomalous diffusion in human brain assessed by tensorial fractional motion model. Magnetic Resonance Imaging, 2017, 42, 74-81.	1.0	6
49	Domain Selectivity in the Parahippocampal Gyrus Is Predicted by the Same Structural Connectivity Patterns in Blind and Sighted Individuals. Journal of Neuroscience, 2017, 37, 4705-4716.	1.7	16
50	Precuneus degeneration in nondemented elderly individuals with <i>APOE</i> £04: Evidence from structural and functional MRI analyses. Human Brain Mapping, 2017, 38, 271-282.	1.9	18
51	Mapping the effect of the X chromosome on the human brain: Neuroimaging evidence from Turner syndrome. Neuroscience and Biobehavioral Reviews, 2017, 80, 263-275.	2.9	23
52	How does white matter microstructure differ between the vascular and amnestic mild cognitive impairment?. Oncotarget, 2017, 8, 42-50.	0.8	18
53	White-Matter Structural Connectivity Underlying Human Laughter-Related Traits Processing. Frontiers in Psychology, 2016, 7, 1637.	1.1	9
54	Atypical ageâ€dependent effects of autism on white matter microstructure in children of 2–7 years. Human Brain Mapping, 2016, 37, 819-832.	1.9	46

#	Article	IF	CITATIONS
55	Abnormal topological organization of the white matter network in Mandarin speakers with congenital amusia. Scientific Reports, 2016, 6, 26505.	1.6	12
56	P4-333: How Does White Matter Connectivity Differ Between Vascular and Degenerative Pre-Dementia?. , 2016, 12, P1162-P1162.		0
57	Disrupted white matter connectivity underlying developmental dyslexia: A machine learning approach. Human Brain Mapping, 2016, 37, 1443-1458.	1.9	143
58	Size matters to function: Brain volume correlates with intrinsic brain activity across healthy individuals. Neurolmage, 2016, 139, 271-278.	2.1	35
59	White matter pathway supporting phonological encoding in speech production: a multi-modal imaging study of brain damage patients. Brain Structure and Function, 2016, 221, 577-589.	1.2	22
60	More bilateral, more anterior: Alterations of brain organization in the large-scale structural network in Chinese dyslexia. NeuroImage, 2016, 124, 63-74.	2.1	36
61	A connectivity-based test-retest dataset of multi-modal magnetic resonance imaging in young healthy adults. Scientific Data, 2015, 2, 150056.	2.4	51
62	Identification of Amnestic Mild Cognitive Impairment Using Multi-Modal Brain Features: A Combined Structural MRI and Diffusion Tensor Imaging Study. Journal of Alzheimer's Disease, 2015, 47, 509-522.	1.2	26
63	The Effects of the X Chromosome on Intrinsic Functional Connectivity in the Human Brain: Evidence from Turner Syndrome Patients. Cerebral Cortex, 2015, 27, bhv240.	1.6	16
64	The semantic anatomical network: Evidence from healthy and brainâ€damaged patient populations. Human Brain Mapping, 2015, 36, 3499-3515.	1.9	31
65	Parallel workflow tools to facilitate human brain MRI post-processing. Frontiers in Neuroscience, 2015, 9, 171.	1.4	8
66	The Papez Circuit in First-Episode, Treatment-Naive Adults with Major Depressive Disorder: Combined Atlas-Based Tract-Specific Quantification Analysis and Voxel-Based Analysis. PLoS ONE, 2015, 10, e0126673.	1.1	14
67	The Effects of an <i>APOE</i> Promoter Polymorphism on Human Cortical Morphology during Nondemented Aging. Journal of Neuroscience, 2015, 35, 1423-1431.	1.7	19
68	Understanding Structural-Functional Relationships in the Human Brain. Neuroscientist, 2015, 21, 290-305.	2.6	173
69	Convergence and divergence across construction methods for human brain white matter networks: An assessment based on individual differences. Human Brain Mapping, 2015, 36, 1995-2013.	1.9	43
70	The White Matter Structural Network Underlying Human Tool Use and Tool Understanding. Journal of Neuroscience, 2015, 35, 6822-6835.	1.7	34
71	Aberrant White Matter Networks Mediate Cognitive Impairment in Patients with Silent Lacunar Infarcts in Basal Ganglia Territory. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1426-1434.	2.4	18
72	The Effects of X Chromosome Loss on Neuroanatomical and Cognitive Phenotypes During Adolescence: a Multi-modal Structural MRI and Diffusion Tensor Imaging Study. Cerebral Cortex, 2015, 25, 2842-2853.	1.6	9

#	Article	IF	CITATIONS
73	Development of Human Brain Structural Networks Through Infancy and Childhood. Cerebral Cortex, 2015, 25, 1389-1404.	1.6	165
74	A significant risk factor for poststroke depression: the depression-related subnetwork. Journal of Psychiatry and Neuroscience, 2015, 40, 259-268.	1.4	29
75	Cortical Thinning Correlates with Cognitive Change in Multiple Sclerosis but not in Neuromyelitis Optica. European Radiology, 2014, 24, 2334-2343.	2.3	34
76	White matter structural connectivity underlying semantic processing: evidence from brain damaged patients. Brain, 2013, 136, 2952-2965.	3.7	146
77	Cognitive impairment and gray/white matter volume abnormalities in pediatric patients with Turner syndrome presenting with various karyotypes. Journal of Pediatric Endocrinology and Metabolism, 2013, 26, 1111-21.	0.4	9
78	PANDA: a pipeline toolbox for analyzing brain diffusion images. Frontiers in Human Neuroscience, 2013, 7, 42.	1.0	583
79	A Hybrid CPU-GPU Accelerated Framework for Fast Mapping of High-Resolution Human Brain Connectome. PLoS ONE, 2013, 8, e62789.	1.1	22
80	Local Diffusion Homogeneity (LDH): An Inter-Voxel Diffusion MRI Metric for Assessing Inter-Subject White Matter Variability. PLoS ONE, 2013, 8, e66366.	1.1	30
81	Increased Global and Local Efficiency of Human Brain Anatomical Networks Detected with FLAIR-DTI Compared to Non-FLAIR-DTI. PLoS ONE, 2013, 8, e71229.	1.1	8
82	Differences of inter-tract correlations between neonates and children around puberty: a study based on microstructural measurements with DTI. Frontiers in Human Neuroscience, 2013, 7, 721.	1.0	24
83	Probabilistic Brain Fiber Tractography on GPUs. , 2012, , .		6
84	Isolated febrile seizures are not associated with structural abnormalities of the limbic system. Epilepsy Research, 2012, 102, 216-220.	0.8	4
85	Convergence and divergence of thickness correlations with diffusion connections across the human cerebral cortex. Neurolmage, 2012, 59, 1239-1248.	2.1	309
86	Effects of Different Correlation Metrics and Preprocessing Factors on Small-World Brain Functional Networks: A Resting-State Functional MRI Study. PLoS ONE, 2012, 7, e32766.	1.1	163
87	Surface Morphology of Amygdala Is Associated with Trait Anxiety. PLoS ONE, 2012, 7, e47817.	1.1	7
88	Age-related alterations in the modular organization of structural cortical network by using cortical thickness from MRI. NeuroImage, 2011, 56, 235-245.	2.1	160
89	Brain Connectivity. Neuroscientist, 2011, 17, 575-591.	2.6	262
90	The macrostructural and microstructural abnormalities of corpus callosum in children with attention deficit/hyperactivity disorder: A combined morphometric and diffusion tensor MRI study. Brain Research, 2010, 1310, 172-180.	1.1	82

#	Article	IF	CITATIONS
91	Sexual dimorphism and asymmetry in human cerebellum: An MRI-based morphometric study. Brain Research, 2010, 1353, 60-73.	1.1	62
92	Age- and Gender-Related Differences in the Cortical Anatomical Network. Journal of Neuroscience, 2009, 29, 15684-15693.	1.7	595
93	Functional and Structural Connectivity Between the Perigenual Anterior Cingulate and Amygdala in Bipolar Disorder. Biological Psychiatry, 2009, 66, 516-521.	0.7	243
94	Neuronal Networks in Alzheimer's Disease. Neuroscientist, 2009, 15, 333-350.	2.6	210
95	Thalamic diffusion and volumetry in temporal lobe epilepsy with and without mesial temporal sclerosis. Epilepsy Research, 2008, 80, 184-193.	0.8	42
96	Insights into the sequence of structural consequences†of convulsive status epilepticus: A longitudinal MRI study. Epilepsia, 2008, 49, 1941-1945.	2.6	18
97	Abnormal anterior cingulum integrity in bipolar disorder determined through diffusion tensor imaging. British Journal of Psychiatry, 2008, 193, 126-129.	1.7	102
98	White Matter Abnormalities in First-Episode, Treatment-Naive Young Adults With Major Depressive Disorder. American Journal of Psychiatry, 2007, 164, 823-826.	4.0	162
99	Prefrontal white matter abnormalities in young adult with major depressive disorder: A diffusion tensor imaging study. Brain Research, 2007, 1168, 124-128.	1.1	115
100	White matter integrity of the whole brain is disrupted in first-episode schizophrenia. NeuroReport, 2006, 17, 23-26.	0.6	129
101	Handedness-related functional connectivity using low-frequency blood oxygenation level-dependent fluctuations. NeuroReport, 2006, 17, 5-8.	0.6	11
102	Side and handedness effects on the cingulum from diffusion tensor imaging. NeuroReport, 2005, 16, 1701-1705.	0.6	48
103	Asymmetry analysis of cingulum based on scale-invariant parameterization by diffusion tensor imaging. Human Brain Mapping, 2005, 24, 92-98.	1.9	140