Maxim S Kazantsev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3769288/publications.pdf

Version: 2024-02-01

		516561	642610
51	698	16	23
papers	citations	h-index	g-index
-1	F.1	F.1	607
51	51	51	687
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Platform for High-Spin Molecules: A Verdazyl-Nitronyl Nitroxide Triradical with Quartet Ground State. Journal of the American Chemical Society, 2021, 143, 8164-8176.	6.6	41
2	Fluorinated Thiophene-Phenylene Co-Oligomers for Optoelectronic Devices. ACS Applied Materials & Eamp; Interfaces, 2020, 12, 9507-9519.	4.0	38
3	Highly Luminescent Solution-Grown Thiophene-Phenylene Co-Oligomer Single Crystals. ACS Applied Materials & Samp; Interfaces, 2016, 8, 10088-10092.	4.0	36
4	Impact of terminal substituents on the electronic, vibrational and optical properties of thiophene–phenylene co-oligomers. Physical Chemistry Chemical Physics, 2019, 21, 11578-11588.	1.3	36
5	Reactivity of Methoxy Species toward CO on Keggin 12-H _{3 12-H_{3 Study with Solid State NMR. Journal of Physical Chemistry C, 2009, 113, 19639-19644.}}	1.5	35
6	Carbonylation of dimethyl ether on solid Rh-promoted Cs-salt of Keggin 12-H3PW12O40: A solid-state NMR study of the reaction mechanism. Journal of Catalysis, 2011, 277, 72-79.	3.1	33
7	Way to Highly Emissive Materials: Increase of Rigidity by Introduction of a Furan Moiety in Co-Oligomers. Journal of Physical Chemistry C, 2017, 121, 23359-23369.	1.5	32
8	Ferromagnetically Coupled <i>S</i> =1 Chains in Crystals of Verdazylâ€Nitronyl Nitroxide Diradicals. Angewandte Chemie - International Edition, 2020, 59, 20704-20710.	7.2	28
9	Highly-emissive solution-grown furan/phenylene co-oligomer single crystals. RSC Advances, 2016, 6, 92325-92329.	1.7	26
10	Characterization and Dynamics of the Different Protonic Species in Hydrated 12-Tungstophosphoric Acid Studied by ² H NMR. Journal of Physical Chemistry C, 2014, 118, 30023-30033.	1.5	25
11	Methyl substituent effect on structure, luminescence and semiconducting properties of furan/phenylene co-oligomer single crystals. CrystEngComm, 2017, 19, 1809-1815.	1.3	23
12	Verdazyl Radical Building Blocks: Synthesis, Structure, and Sonogashira Crossâ€Coupling Reactions. European Journal of Organic Chemistry, 2018, 2018, 4802-4811.	1.2	23
13	Highly bendable luminescent semiconducting organic single crystal. Synthetic Metals, 2017, 232, 60-65.	2.1	21
14	Synthesis, luminescence and charge transport properties of furan/phenylene co-oligomers: The study of conjugation length effect. Organic Electronics, 2018, 56, 208-215.	1.4	21
15	Solid-state NMR study of the kinetics and mechanism of dimethyl ether carbonylation on cesium salt of 12-tungstophosphoric acid modified with Ag, Pt, and Rh. Journal of Catalysis, 2013, 308, 250-257.	3.1	20
16	Long-range exciton transport in brightly fluorescent furan/phenylene co-oligomer crystals. Journal of Materials Chemistry C, 2019, 7, 60-68.	2.7	18
17	Stimuli responsive aggregation-induced emission of bis(4-((9 <i>H</i> -fluoren-9-ylidene)methyl)phenyl)thiophene single crystals. Materials Chemistry Frontiers, 2019, 3, 1545-1554.	3.2	18
18	Carbonylation of dimethyl ether on Rh/Cs2HPW12O40: Solid-state NMR study of the mechanism of reaction in the presence of a methyl iodide promoter. Journal of Catalysis, 2012, 291, 9-16.	3.1	16

#	Article	IF	CITATIONS
19	Direct ² H NMR Observation of the Proton Mobility of the Acidic Sites of Anhydrous 12â€Tungstophosphoric Acid. ChemPhysChem, 2013, 14, 1783-1786.	1.0	16
20	Crystal packing control of a trifluoromethyl-substituted furan/phenylene co-oligomer. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2018, 74, 450-457.	0.5	12
21	Aromatic SNF-Approach to Fluorinated Phenyl tert-Butyl Nitroxides. Molecules, 2019, 24, 4493.	1.7	12
22	Synthesis, characterization and organic field-effect transistors applications of novel tetrathienoacene derivatives. Dyes and Pigments, 2021, 185, 108911.	2.0	12
23	Selectively Fluorinated Furanâ€Phenylene Coâ€Oligomers Pave the Way to Bright Ambipolar Lightâ€Emitting Electronic Devices. Advanced Functional Materials, 2021, 31, 2104638.	7.8	12
24	Oxidative addition of verdazyl halogenides to Pd(PPh3)4. New Journal of Chemistry, 2019, 43, 15293-15301.	1.4	11
25	A Weakly Antiferromagnetically Coupled Biradical Combining Verdazyl with Nitronylnitroxide Units. ChemPlusChem, 2020, 85, 159-162.	1.3	11
26	Novel Anthrathiophene-Based Small Molecules as Donor Material for Organic Photovoltaics: Synthesis and Light-Induced EPR Study. Zeitschrift Fur Physikalische Chemie, 2017, 231, 425-438.	1.4	10
27	Synthesis of Nitroxide Diradical Using a New Approach. Molecules, 2020, 25, 2701.	1.7	10
28	Carbonylation of Dimethyl Ether with CO on Solid 12-Tungstophosphoric Acid: In Situ Magic Angle Spinning NMR Monitoring of the Reaction Kinetics. Journal of Physical Chemistry C, 2013, 117, 11168-11175.	1.5	9
29	Naphtho[4,3,2,1-lmn][2,9]phenanthrolines: Synthesis, Ñharacterization, optical properties and light-induced electron transfer in composites with the semiconducting polymer MEH-PPV. Synthetic Metals, 2015, 201, 43-48.	2.1	9
30	A nitroxide diradical containing a ferrocen-1,1′-diyl-substituted 1,3-diazetidine-2,4-diimine coupler. Tetrahedron Letters, 2017, 58, 478-481.	0.7	9
31	1,3-Diaza[3]ferrocenophanes functionalized with a nitronyl nitroxide group. Tetrahedron, 2018, 74, 1942-1950.	1.0	8
32	Preparation of Multiâ€Spin Systems: A Case Study of Tolaneâ€Bridged Verdazylâ€Based Heteroâ€Diradicals. European Journal of Organic Chemistry, 2020, 2020, 1996-2004.	1.2	8
33	Luminescent Highâ€Mobility 2D Organic Semiconductor Single Crystals. Advanced Electronic Materials, 2022, 8, .	2.6	8
34	Synthesis of $2,2\hat{a}\in^2$ -[$2,2\hat{a}\in^2$ -(arenediyl)bis(anthra[$2,3$ -b]thiophene- $5,10$ -diylidene)]tetrapropanedinitriles and their performance as non-fullerene acceptors in organic photovoltaics. Synthetic Metals, 2019, 255, 116097.	2.1	7
35	Diaza-analogs of benzopyrene and perylene containing thienyl and 4-(phenylamino)phenyl groups: Synthesis, characterization, optical and electrochemical properties. Dyes and Pigments, 2017, 136, 707-714.	2.0	5
36	Synthesis and Structure of (Nitronyl Nitroxide-2-ido)(tert-butyldiphenylphosphine)gold(I) and -(Di(tert-butyl)phenylphosphine)gold(I) Derivatives; Their Comparative Study in the Cross-Coupling Reaction. Crystals, 2020, 10, 770.	1.0	5

3

#	Article	IF	CITATIONS
37	Aromatic nucleophilic substitution: A case study of the interaction of a lithiated nitronyl nitroxide with polyfluorinated quinoline-N-oxides. Journal of Fluorine Chemistry, 2020, 237, 109613.	0.9	5
38	A Concise and Efficient Route to Electronâ€Accepting 2,2′â€[2,2′â€Arenediylbis(11â€oxoanthra[1,2â€ <i>b</i>]thiopheneâ€6â€ylidene)]dipropanedinitriles. Euro of Organic Chemistry, 2018, 2018, 2259-2266.	p ∉æ n Jourr	na l
39	The Suzuki–Miyaura reaction as a tool for modification of phenoxyl-nitroxyl radicals of the 4 <i>H</i> i>imidazole <i>N</i> oxide series. RSC Advances, 2018, 8, 26099-26107.	1.7	4
40	2,7-Disubstituted 1,3,6,8-tetraazabenzopyrenes: Synthesis, characterization, optical and electrochemical properties. Dyes and Pigments, 2019, 168, 219-227.	2.0	4
41	P ₂ O ₅ -Promoted Cyclization of Di[aryl(hetaryl)methyl] Malonic Acids as a Pathway to Fused Spiro[4.4]nonane-1,6-Diones. Journal of Organic Chemistry, 2022, 87, 2456-2469.	1.7	4
42	2-((9H-fluoren-9-ylidene)methyl)pyridine as a new functional block for aggregation induced emissive and stimuli-responsive materials. Dyes and Pigments, 2020, 181, 108595.	2.0	3
43	Alkyl-substituted bis(4-((9 <i>H</i> -fluoren-9-ylidene)methyl)phenyl)thiophenes: weakening of intermolecular interactions and additive-assisted crystallization. CrystEngComm, 2021, 23, 2654-2664.	1.3	3
44	A quantitative topological descriptor for linear co-oligomer fusion. Chemical Communications, 2018, 54, 7235-7238.	2.2	2
45	Multispin Systems with a Rigid Ferroceneâ€1,1′â€diylâ€Substituted 1,3â€Diazetidineâ€2,4â€diimine Coupler: Approach. European Journal of Organic Chemistry, 2022, 2022, .	A General 1.2	2
46	1,3,7,9-Tetraazaperylene frameworks: Synthesis, photoluminescence properties, and thin film morphology. Dyes and Pigments, 2018, 150, 252-260.	2.0	1
47	Cover Feature: Multispin Systems with a Rigid Ferroceneâ€1,1′â€diylâ€Substituted 1,3â€Diazetidineâ€2,4â€dii Coupler: A General Approach (Eur. J. Org. Chem. 7/2022). European Journal of Organic Chemistry, 2022, 2022, .	mine 1.2	1
48	Effects of Spiro-Cyclohexane Substitution of Nitroxyl Biradicals on Dynamic Nuclear Polarization. Molecules, 2022, 27, 3252.	1.7	1
49	Ferromagnetically Coupled S =1 Chains in Crystals of Verdazylâ€Nitronyl Nitroxide Diradicals. Angewandte Chemie, 2020, 132, 20885-20891.	1.6	0
50	Synthesis, Characterization and Photovoltaic Properties of Electronâ€Accepting (11â€Oxoanthra[2,1â€ <i>b</i>]thiophenâ€6â€ylidene)dipropanedinitrileâ€Based Molecules. ChemistrySelect, 206, 6043-6049.	2d.7	0
51	Synthetic approach for the control of self-doping in luminescent organic semiconductors. Materials Chemistry Frontiers, 0, , .	3.2	0