
Eric J Deeds

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3769067/publications.pdf Version: 2024-02-01

FRIC | DEEDS

#	Article	IF	CITATIONS
1	Teaching Dynamics to Biology Undergraduates: the UCLA Experience. Bulletin of Mathematical Biology, 2022, 84, 43.	1.9	1
2	Quantifying information accumulation encoded in the dynamics of biochemical signaling. Nature Communications, 2021, 12, 1272.	12.8	18
3	Robustness and the evolution of length control strategies in the T3SS and flagellar hook. Biophysical Journal, 2021, 120, 3820-3830.	0.5	1
4	Differential Contributions of Actin and Myosin to the Physical Phenotypes and Invasion of Pancreatic Cancer Cells. Cellular and Molecular Bioengineering, 2020, 13, 27-44.	2.1	13
5	Machine learning classification can reduce false positives in structure-based virtual screening. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18477-18488.	7.1	111
6	Cooperativity in Proteasome Core Particle Maturation. IScience, 2020, 23, 101090.	4.1	5
7	Crosstalk and ultrasensitivity in protein degradation pathways. PLoS Computational Biology, 2020, 16, e1008492.	3.2	5
8	Signal integration and information transfer in an allosterically regulated network. Npj Systems Biology and Applications, 2019, 5, 23.	3.0	11
9	Modeling Proteasome Assembly Pathways in Bacteria. Biophysical Journal, 2019, 116, 63a.	0.5	0
10	Computational approaches to macromolecular interactions in the cell. Current Opinion in Structural Biology, 2019, 55, 59-65.	5.7	12
11	Intrinsic limits of information transmission in biochemical signalling motifs. Interface Focus, 2018, 8, 20180039.	3.0	9
12	Fundamental trade-offs between information flow in single cells and cellular populations. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5755-5760.	7.1	106
13	The Botanical Drug Substance Crofelemer as a Model System for Comparative Characterization of Complex Mixture Drugs. Journal of Pharmaceutical Sciences, 2017, 106, 3242-3256.	3.3	14
14	Comparative Characterization of Crofelemer Samples Using Data Mining and Machine Learning Approaches With Analytical Stability Data Sets. Journal of Pharmaceutical Sciences, 2017, 106, 3270-3279.	3.3	5
15	Crosstalk and the evolvability of intracellular communication. Nature Communications, 2017, 8, 16009.	12.8	29
16	Chemical Stability of the Botanical Drug Substance Crofelemer: A Model System for Comparative Characterization of Complex Mixture Drugs. Journal of Pharmaceutical Sciences, 2017, 106, 3257-3269.	3.3	6
17	Mathematical Model for Length Control by the Timing of Substrate Switching in the Type III Secretion System. PLoS Computational Biology, 2016, 12, e1004851.	3.2	14
18	Maturation of the proteasome core particle induces an affinity switch that controls regulatory particle association. Nature Communications, 2015, 6, 6384.	12.8	39

Eric J Deeds

#	Article	IF	CITATIONS
19	Phosphatase Specificity and Pathway Insulation in Signaling Networks. Biophysical Journal, 2015, 108, 986-996.	0.5	25
20	Optimizing the Assembly of Stacked Rings. Biophysical Journal, 2015, 108, 220a-221a.	0.5	0
21	Crosstalk and the evolution of specificity in two-component signaling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5550-5555.	7.1	95
22	Structural Properties of Non-Traditional Drug Targets Present New Challenges for Virtual Screening. Journal of Chemical Information and Modeling, 2013, 53, 2073-2081.	5.4	28
23	Machines vs. Ensembles: Effective MAPK Signaling through Heterogeneous Sets of Protein Complexes. PLoS Computational Biology, 2013, 9, e1003278.	3.2	46
24	Optimizing ring assembly reveals the strength of weak interactions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2348-2353.	7.1	41
25	Crosstalk and Competition in Signaling Networks. Biophysical Journal, 2012, 103, 2389-2398.	0.5	57
26	Combinatorial Complexity and Compositional Drift in Protein Interaction Networks. PLoS ONE, 2012, 7, e32032.	2.5	42
27	Curvature in metabolic scaling: A reply to MacKay. Journal of Theoretical Biology, 2011, 280, 197-198.	1.7	5
28	Curvature in metabolic scaling. Nature, 2010, 464, 753-756.	27.8	293
29	Sizing Up Allometric Scaling Theory. PLoS Computational Biology, 2008, 4, e1000171.	3.2	198
30	Quantifying fitness distributions and phenotypic relationships in recombinant yeast populations. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10553-10558.	7.1	9
31	Robust protein protein interactions in crowded cellular environments. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14952-14957.	7.1	70
32	From The Cover: A simple physical model for scaling in protein-protein interaction networks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 311-316.	7.1	117
33	Understanding ensemble protein folding at atomic detail. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17747-17752.	7.1	64
34	Protein structure and evolutionary history determine sequence space topology. Genome Research, 2005, 15, 385-392.	5.5	82
35	High-resolution protein folding with a transferable potential. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18914-18919.	7.1	44
36	Prokaryotic phylogenies inferred from protein structural domains. Genome Research, 2005, 15, 393-402.	5.5	34

Eric J Deeds

#	Article	IF	CITATIONS
37	The Emergence of Scaling in Sequence-Based Physical Models of Protein Evolution. Biophysical Journal, 2005, 88, 3905-3911.	0.5	9
38	Proteomic Traces of Speciation. Journal of Molecular Biology, 2004, 336, 695-706.	4.2	19
39	Protein Evolution within a Structural Space. Biophysical Journal, 2003, 85, 2962-2972.	0.5	37
40	Equilibrium Distribution of Mutators in the Single Fitness Peak Model. Physical Review Letters, 2003, 91, 138105.	7.8	23