
Georgina K. Such

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3768989/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polyoxometalates as chemically and structurally versatile components in self-assembled materials. Chemical Science, 2022, 13, 2510-2527.	3.7	29
2	Understanding the Biological Interactions of pHâ€Swellable Nanoparticles. Macromolecular Bioscience, 2022, 22, e2100445.	2.1	9
3	Quantifying the Endosomal Escape of pH-Responsive Nanoparticles Using the Split Luciferase Endosomal Escape Quantification Assay. ACS Applied Materials & Interfaces, 2022, 14, 3653-3661.	4.0	19
4	Understanding the Polymer Rearrangement of pH-Responsive Nanoparticles. Australian Journal of Chemistry, 2021, 74, 514.	0.5	1
5	Acid-Responsive Poly(glyoxylate) Self-Immolative Star Polymers. Biomacromolecules, 2021, 22, 3892-3900.	2.6	8
6	Polyglyoxylamides with a pH-Mediated Solubility and Depolymerization Switch. Macromolecules, 2021, 54, 10547-10556.	2.2	7
7	Multicompartment Polymeric Nanocarriers for Biomedical Applications. Macromolecular Rapid Communications, 2020, 41, e2000298.	2.0	19
8	Rationale Design of pH-Responsive Core–Shell Nanoparticles: Polyoxometalate-Mediated Structural Reorganization. ACS Applied Nano Materials, 2020, 3, 11247-11253.	2.4	4
9	Understanding Cell Interactions Using Modular Nanoparticle Libraries. Australian Journal of Chemistry, 2019, 72, 595.	0.5	3
10	Engineered Polymeric Materials for Biological Applications: Overcoming Challenges of the Bio–Nano Interface. Polymers, 2019, 11, 1441.	2.0	24
11	pHâ€Responsive Polymer Nanoparticles for Drug Delivery. Macromolecular Rapid Communications, 2019, 40, e1800917.	2.0	318
12	Controlling endosomal escape using nanoparticle composition: current progress and future perspectives. Nanomedicine, 2019, 14, 215-223.	1.7	63
13	The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery. Bioconjugate Chemistry, 2019, 30, 263-272.	1.8	380
14	The potential of nanoparticle vaccines as a treatment for cancer. Molecular Immunology, 2018, 98, 2-7.	1.0	27
15	Controlling Endosomal Escape Using pH-Responsive Nanoparticles with Tunable Disassembly. ACS Applied Nano Materials, 2018, 1, 3164-3173.	2.4	36
16	pH-Responsive Transferrin-pHlexi Particles Capable of Targeting Cells in Vitro. ACS Macro Letters, 2017, 6, 315-320.	2.3	12
17	Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1452.	3.3	185
18	Probing Endosomal Escape Using pHlexi Nanoparticles. Macromolecular Bioscience, 2017, 17, 1600248.	2.1	29

#	Article	IF	CITATIONS
19	Limitations with solvent exchange methods for synthesis of colloidal fullerenes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 514, 21-31.	2.3	15
20	Quantifying Nanoparticle Internalization Using a High Throughput Internalization Assay. Pharmaceutical Research, 2016, 33, 2421-2432.	1.7	22
21	Flow Cytometry: HD Flow Cytometry: An Improved Way to Quantify Cellular Interactions with Nanoparticles (Adv. Healthcare Mater. 18/2016). Advanced Healthcare Materials, 2016, 5, 2332-2332.	3.9	1
22	Tuning the properties of pH responsive nanoparticles to control cellular interactions in vitro and ex vivo. Polymer Chemistry, 2016, 7, 6015-6024.	1.9	18
23	HD Flow Cytometry: An Improved Way to Quantify Cellular Interactions with Nanoparticles. Advanced Healthcare Materials, 2016, 5, 2333-2338.	3.9	5
24	Multifunctional Thrombinâ€Activatable Polymer Capsules for Specific Targeting to Activated Platelets. Advanced Materials, 2015, 27, 5153-5157.	11.1	73
25	Self-assembling dual component nanoparticles with endosomal escape capability. Soft Matter, 2015, 11, 2993-3002.	1.2	48
26	Interfacing Materials Science and Biology for Drug Carrier Design. Advanced Materials, 2015, 27, 2278-2297.	11.1	175
27	Particle generation, functionalization and sortase A–mediated modification with targeting of single-chain antibodies for diagnostic and therapeutic use. Nature Protocols, 2015, 10, 90-105.	5.5	45
28	Endocytic Capsule Sensors for Probing Cellular Internalization. Advanced Healthcare Materials, 2014, 3, 1551-1554.	3.9	15
29	Tuning Particle Biodegradation through Polymer–Peptide Blend Composition. Biomacromolecules, 2014, 15, 4429-4438.	2.6	8
30	Endocytic pHâ€Triggered Degradation of Nanoengineered Multilayer Capsules. Advanced Materials, 2014, 26, 1901-1905.	11.1	60
31	Biomedical Applications: Endocytic pH-Triggered Degradation of Nanoengineered Multilayer Capsules (Adv. Mater. 12/2014). Advanced Materials, 2014, 26, 1947-1947.	11.1	0
32	Engineering Enzymeâ€Cleavable Hybrid Click Capsules with a pHâ€Sheddable Coating for Intracellular Degradation. Small, 2014, 10, 4080-4086.	5.2	19
33	Peptideâ€Tunable Drug Cytotoxicity via Oneâ€&tep Assembled Polymer Nanoparticles. Advanced Materials, 2014, 26, 2398-2402.	11.1	44
34	Fundamental Studies of Hybrid Poly(2-(diisopropylamino)ethyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 147 Td (me	ethacrylato 2.6	e)/Poly(<i>N< 7</i>
35	One-Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering. Science, 2013, 341, 154-157.	6.0	1,683
36	Mechanically Tunable, Selfâ€Adjuvanting Nanoengineered Polypeptide Particles. Advanced Materials, 2013, 25, 3468-3472.	11.1	84

#	Article	IF	CITATIONS
37	Design of Degradable Click Delivery Systems. Macromolecular Rapid Communications, 2013, 34, 894-902.	2.0	13
38	Immobilization and Intracellular Delivery of an Anticancer Drug Using Mussel-Inspired Polydopamine Capsules. Biomacromolecules, 2012, 13, 2225-2228.	2.6	298
39	Targeting Cancer Cells: Controlling the Binding and Internalization of Antibody-Functionalized Capsules. ACS Nano, 2012, 6, 6667-6674.	7.3	81
40	Engineering Cellular Degradation of Multilayered Capsules through Controlled Cross-Linking. ACS Nano, 2012, 6, 10186-10194.	7.3	49
41	Engineering Particles for Therapeutic Delivery: Prospects and Challenges. ACS Nano, 2012, 6, 3663-3669.	7.3	160
42	Photoinitiated Alkyne–Azide Click and Radical Cross-Linking Reactions for the Patterning of PEG Hydrogels. Biomacromolecules, 2012, 13, 889-895.	2.6	90
43	Bioâ€Click Chemistry: Enzymatic Functionalization of PEGylated Capsules for Targeting Applications. Angewandte Chemie - International Edition, 2012, 51, 7132-7136.	7.2	72
44	Click poly(ethylene glycol) multilayers on RO membranes: Fouling reduction and membrane characterization. Journal of Membrane Science, 2012, 409-410, 9-15.	4.1	40
45	Synthesis and functionalization of nanoengineered materials using click chemistry. Progress in Polymer Science, 2012, 37, 985-1003.	11.8	97
46	ATRP-mediated continuous assembly of polymers for the preparation of nanoscale films. Chemical Communications, 2011, 47, 12601.	2.2	46
47	New Insights into the Substrate–Plasma Polymer Interface. Journal of Physical Chemistry B, 2011, 115, 6495-6502.	1.2	23
48	Layer-by-Layer Assembled Capsules for Biomedical Applications. , 2011, , 359-377.		0
49	Tuning the Properties of Layer-by-Layer Assembled Poly(acrylic acid) Click Films and Capsules. Macromolecules, 2011, 44, 1194-1202.	2.2	40
50	Modular Assembly of Layer-by-Layer Capsules with Tailored Degradation Profiles. Langmuir, 2011, 27, 1275-1280.	1.6	44
51	Toward Therapeutic Delivery with Layer-by-Layer Engineered Particles. ACS Nano, 2011, 5, 4252-4257.	7.3	112
52	Dopamine-Mediated Continuous Assembly of Biodegradable Capsules. Chemistry of Materials, 2011, 23, 3141-3143.	3.2	119
53	Engineered hydrogen-bonded polymer multilayers: from assembly to biomedical applications. Chemical Society Reviews, 2011, 40, 19-29.	18.7	327
54	Assembly and Degradation of Lowâ€Fouling Clickâ€Functionalized Poly(ethylene glycol)â€Based Multilayer Films and Capsules. Small, 2011, 7, 1075-1085.	5.2	55

#	Article	IF	CITATIONS
55	Polymersome‣oaded Capsules for Controlled Release of DNA. Small, 2011, 7, 2109-2119.	5.2	105
56	Nanoengineered Films via Surfaceâ€Confined Continuous Assembly of Polymers. Small, 2011, 7, 2863-2867.	5.2	43
57	Chargeâ€Shifting Click Capsules with Dualâ€Responsive Cargo Release Mechanisms. Advanced Materials, 2011, 23, H273-7.	11.1	101
58	"Smart―Capsules for Drug Release: Charge-Shifting Click Capsules with Dual-Responsive Cargo Release Mechanisms (Adv. Mater. 36/2011). Advanced Materials, 2011, 23, H210-H210.	11.1	0
59	Challenges facing colloidal delivery systems: From synthesis to the clinic. Current Opinion in Colloid and Interface Science, 2011, 16, 171-181.	3.4	94
60	Controlled release of DNA from poly(vinylpyrrolidone) capsules using cleavable linkers. Biomaterials, 2011, 32, 6277-6284.	5.7	47
61	Bypassing Multidrug Resistance in Cancer Cells with Biodegradable Polymer Capsules. Advanced Materials, 2010, 22, 5398-5403.	11.1	85
62	Drug Delivery: Bypassing Multidrug Resistance in Cancer Cells with Biodegradable Polymer Capsules (Adv. Mater. 47/2010). Advanced Materials, 2010, 22, 5324-5324.	11.1	2
63	Triggering Release of Encapsulated Cargo. Angewandte Chemie - International Edition, 2010, 49, 2664-2666.	7.2	91
64	Reaction Vessels Assembled by the Sequential Adsorption of Polymers. Advances in Polymer Science, 2010, , 155-179.	0.4	2
65	Biodegradable Click Capsules with Engineered Drug-Loaded Multilayers. ACS Nano, 2010, 4, 1653-1663.	7.3	181
66	Surface "Click―Chemistry on Brominated Plasma Polymer Thin Films. Langmuir, 2010, 26, 3388-3393.	1.6	48
67	Targeting of Cancer Cells Using Click-Functionalized Polymer Capsules. Journal of the American Chemical Society, 2010, 132, 15881-15883.	6.6	157
68	Fabrication of asymmetric "Janus―particles via plasma polymerization. Chemical Communications, 2010, 46, 5121.	2.2	48
69	Clickâ€Engineered, Bioresponsive, Drugâ€Loaded PEG Spheres. Advanced Materials, 2009, 21, 4348-4352.	11.1	34
70	Peptideâ€Functionalized, Lowâ€Biofouling Click Multilayers for Promoting Cell Adhesion and Growth. Small, 2009, 5, 444-448.	5.2	53
71	Low-Fouling Poly(<i>N</i> -vinyl pyrrolidone) Capsules with Engineered Degradable Properties. Biomacromolecules, 2009, 10, 2839-2846.	2.6	100
72	Polyelectrolyte Blend Multilayers: A Versatile Route to Engineering Interfaces and Films. Advanced Functional Materials, 2008, 18, 17-26.	7.8	74

#	Article	IF	CITATIONS
73	Low-Fouling, Biofunctionalized, and Biodegradable Click Capsules. Biomacromolecules, 2008, 9, 3389-3396.	2.6	118
74	Ultrathin, Responsive Polymer Click Capsules. Nano Letters, 2007, 7, 1706-1710.	4.5	191
75	Poly(vinylpyrrolidone) for Bioconjugation and Surface Ligand Immobilization. Biomacromolecules, 2007, 8, 2950-2953.	2.6	90
76	Next generation, sequentially assembled ultrathin films: beyond electrostatics. Chemical Society Reviews, 2007, 36, 707.	18.7	425
77	The Use of Block Copolymers to Systematically Modify Photochromic Behavior. Macromolecules, 2006, 39, 9562-9570.	2.2	42
78	Rapid Photochromic Switching in a Rigid Polymer Matrix Using Living Radical Polymerization. Macromolecules, 2006, 39, 1391-1396.	2.2	73
79	Assembly of Ultrathin Polymer Multilayer Films by Click Chemistry. Journal of the American Chemical Society, 2006, 128, 9318-9319.	6.6	356
80	The generic enhancement of photochromic dye switching speeds in a rigid polymer matrix. Nature Materials, 2005, 4, 249-253.	13.3	226
81	Tailoring Photochromic Performance of Polymer-Dye Conjugates Using Living Radical Polymerization (ATRP). Molecular Crystals and Liquid Crystals, 2005, 430, 273-279.	0.4	14
82	Research Trends in Photochromism: Control of Photochromism in Rigid Polymer Matrices and other Advances. Australian Journal of Chemistry, 2005, 58, 825.	0.5	33
83	Control of Photochromism through Local Environment Effects Using Living Radical Polymerization (ATRP). Macromolecules, 2004, 37, 9664-9666.	2.2	49
84	Factors Influencing Photochromism of Spiro-Compounds Within Polymeric Matrices. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2003, 43, 547-579.	2.2	120
85	Lewis Base Catalyzed Synthesis of Sulfur Heterocycles via the C1â€Pyridinium Enolate.**. Angewandte Chemie, 0, , .	1.6	0
86	Lewis Base Catalyzed Synthesis of Sulfur Heterocycles via the C1â€Pyridinium Enolate.**. Angewandte Chemie - International Edition, 0, , .	7.2	5