
Mark W Shephard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3768693/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Radiative forcing by longâ€lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research, 2008, 113, .	3.3	3,199
2	The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation. Bulletin of the American Meteorological Society, 2015, 96, 1311-1332.	1.7	443
3	Predicted errors of tropospheric emission spectrometer nadir retrievals from spectral window selection. Journal of Geophysical Research, 2004, 109, .	3.3	165
4	Space-based detection of missing sulfur dioxide sources of global air pollution. Nature Geoscience, 2016, 9, 496-500.	5.4	149
5	TES ammonia retrieval strategy and global observations of the spatial and seasonal variability of ammonia. Atmospheric Chemistry and Physics, 2011, 11, 10743-10763.	1.9	129
6	Satellite monitoring of ammonia: A case study of the San Joaquin Valley. Journal of Geophysical Research, 2010, 115, .	3.3	118
7	Cross-track Infrared Sounder (CrIS) satellite observations of tropospheric ammonia. Atmospheric Measurement Techniques, 2015, 8, 1323-1336.	1.2	117
8	First satellite observations of lower tropospheric ammonia and methanol. Geophysical Research Letters, 2008, 35, .	1.5	111
9	Constraining U.S. ammonia emissions using TES remote sensing observations and the GEOSâ€Chem adjoint model. Journal of Geophysical Research D: Atmospheres, 2013, 118, 3355-3368.	1.2	110
10	Comparison of carbon monoxide measurements by TES and MOPITT: Influence of a priori data and instrument characteristics on nadir atmospheric species retrievals. Journal of Geophysical Research, 2007, 112, .	3.3	108
11	The QME AERI LBLRTM: A Closure Experiment for Downwelling High Spectral Resolution Infrared Radiance. Journals of the Atmospheric Sciences, 2004, 61, 2657-2675.	0.6	107
12	Implementation of cloud retrievals for Tropospheric Emission Spectrometer (TES) atmospheric retrievals: part 1. Description and characterization of errors on trace gas retrievals. Journal of Geophysical Research, 2006, 111, .	3.3	107
13	Performance of the Line-By-Line Radiative Transfer Model (LBLRTM) for temperature, water vapor, and trace gas retrievals: recent updates evaluated with IASI case studies. Atmospheric Chemistry and Physics, 2013, 13, 6687-6711.	1.9	107
14	Performance of the line-by-line radiative transfer model (LBLRTM) for temperature and species retrievals: IASI case studies from JAIVEx. Atmospheric Chemistry and Physics, 2009, 9, 7397-7417.	1.9	99
15	NH ₃ emissions from large point sources derived from CrIS and IASI satellite observations. Atmospheric Chemistry and Physics, 2019, 19, 12261-12293.	1.9	89
16	Improved Daytime Column-Integrated Precipitable Water Vapor from Vaisala Radiosonde Humidity Sensors. Journal of Atmospheric and Oceanic Technology, 2008, 25, 873-883.	0.5	86
17	Current updates of the water-vapor line list in HITRAN: A new "Diet―for air-broadened half-widths. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 108, 389-402.	1.1	71
18	Sources and Impacts of Atmospheric NH3: Current Understanding and Frontiers for Modeling, Measurements, and Remote Sensing in North America. Current Pollution Reports, 2015, 1, 95-116.	3.1	69

MARK W SHEPHARD

#	Article	IF	CITATIONS
19	Global evaluation of ammonia bidirectional exchange and livestock diurnal variation schemes. Atmospheric Chemistry and Physics, 2015, 15, 12823-12843.	1.9	68
20	Dry Deposition of Reactive Nitrogen From Satellite Observations of Ammonia and Nitrogen Dioxide Over North America. Geophysical Research Letters, 2018, 45, 1157-1166.	1.5	62
21	Informationâ€centered representation of retrievals with limited degrees of freedom for signal: Application to methane from the Tropospheric Emission Spectrometer. Journal of Geophysical Research, 2009, 114, .	3.3	58
22	Quantifying spatial and seasonal variability in atmospheric ammonia with in situ and space-based observations. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	54
23	Validation of the CrIS fast physical NH ₃ retrieval with ground-based FTIR. Atmospheric Measurement Techniques, 2017, 10, 2645-2667.	1.2	52
24	Satellite observations of tropospheric ammonia and carbon monoxide: Global distributions, regional correlations and comparisons to model simulations. Atmospheric Environment, 2015, 106, 262-277.	1.9	48
25	Ammonia measurements from space with the Cross-track Infrared Sounder: characteristics and applications. Atmospheric Chemistry and Physics, 2020, 20, 2277-2302.	1.9	47
26	Observed Trends in Severe Weather Conditions Based on Humidex, Wind Chill, and Heavy Rainfall Events in Canada for 1953–2012. Atmosphere - Ocean, 2015, 53, 383-397.	0.6	44
27	Trends in Canadian Shortâ€Ðuration Extreme Rainfall: Including an Intensity–Duration–Frequency Perspective. Atmosphere - Ocean, 2014, 52, 398-417.	0.6	41
28	Tropospheric methanol observations from space: retrieval evaluation and constraints on the seasonality of biogenic emissions. Atmospheric Chemistry and Physics, 2012, 12, 5897-5912.	1.9	39
29	A Large Underestimate of Formic Acid from Tropical Fires: Constraints from Space-Borne Measurements. Environmental Science & Technology, 2016, 50, 5631-5640.	4.6	39
30	Comparison of Tropospheric Emission Spectrometer nadir water vapor retrievals with in situ measurements. Journal of Geophysical Research, 2008, 113, .	3.3	38
31	Tropospheric Emission Spectrometer nadir spectral radiance comparisons. Journal of Geophysical Research, 2008, 113, .	3.3	38
32	Tropospheric Emission Spectrometer (TES) satellite observations of ammonia, methanol, formic acid, and carbon monoxide over the Canadian oil sands: validation and model evaluation. Atmospheric Measurement Techniques, 2015, 8, 5189-5211.	1.2	37
33	Satellite-derived emissions of carbon monoxide, ammonia, and nitrogen dioxide from the 2016 Horse River wildfire in the Fort McMurray area. Atmospheric Chemistry and Physics, 2019, 19, 2577-2599.	1.9	37
34	Quantifying global terrestrial methanol emissions using observations from the TES satellite sensor. Atmospheric Chemistry and Physics, 2014, 14, 2555-2570.	1.9	36
35	HCOOH measurements from space: TES retrieval algorithm and observed global distribution. Atmospheric Measurement Techniques, 2014, 7, 2297-2311.	1.2	34
36	OMI satellite observations of decadal changes in ground-level sulfur dioxide over North America. Atmospheric Chemistry and Physics, 2017, 17, 5921-5929.	1.9	31

MARK W SHEPHARD

#	Article	IF	CITATIONS
37	Contributions of natural and anthropogenic sources to ambient ammonia in the Athabasca Oil Sands and north-western Canada. Atmospheric Chemistry and Physics, 2018, 18, 2011-2034.	1.9	31
38	New Bidirectional Ammonia Flux Model in an Air Quality Model Coupled With an Agricultural Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 2934-2957.	1.3	31
39	Methanol from TES global observations: retrieval algorithm and seasonal and spatial variability. Atmospheric Chemistry and Physics, 2012, 12, 8189-8203.	1.9	28
40	Probability of Tornado Occurrence across Canada. Journal of Climate, 2013, 26, 9415-9428.	1.2	27
41	Inverse modeling of NH ₃ sources using CrIS remote sensing measurements. Environmental Research Letters, 2020, 15, 104082.	2.2	27
42	An integrated approach for identifying homogeneous regions of extreme rainfall events and estimating IDF curves in Southern Ontario, Canada: Incorporating radar observations. Journal of Hydrology, 2015, 528, 734-750.	2.3	26
43	Regionalization of heavy rainfall to improve climatic design values for infrastructure: case study in Southern Ontario, Canada. Hydrological Sciences Journal, 2011, 56, 1067-1089.	1.2	25
44	Unprecedented Atmospheric Ammonia Concentrations Detected in the High Arctic From the 2017 Canadian Wildfires. Journal of Geophysical Research D: Atmospheres, 2019, 124, 8178-8202.	1.2	25
45	Atmospheric ammonia variability and link with particulate matter formation: a case study over the Paris area. Atmospheric Chemistry and Physics, 2020, 20, 577-596.	1.9	24
46	UK Ammonia Emissions Estimated With Satellite Observations and GEOS hem. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035237.	1.2	24
47	Tropospheric emission spectrometer (TES) and atmospheric chemistry experiment (ACE) measurements of tropospheric chemistry in tropical southeast Asia during a moderate El Niño in 2006. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109, 1931-1942.	1.1	22
48	Long-term stability of TES satellite radiance measurements. Atmospheric Measurement Techniques, 2011, 4, 1481-1490.	1.2	22
49	10-year satellite-constrained fluxes of ammonia improve performance of chemistry transport models. Atmospheric Chemistry and Physics, 2021, 21, 4431-4451.	1.9	21
50	Water Vapor Measurements by Howard University Raman Lidar during the WAVES 2006 Campaign. Journal of Atmospheric and Oceanic Technology, 2010, 27, 42-60.	0.5	17
51	Assessing the Iterative Finite Difference Mass Balance and 4Dâ€Var Methods to Derive Ammonia Emissions Over North America Using Synthetic Observations. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4222-4236.	1.2	14
52	A High-Resolution Canadian Lightning Climatology. Atmosphere - Ocean, 2013, 51, 50-59.	0.6	11
53	Assessment of the aerosol optical depths measured by satellite-based passive remote sensors in the Alberta oil sands region. Atmospheric Chemistry and Physics, 2017, 17, 1931-1943.	1.9	11
54	Estimation of errors associated with the EarthCARE 3D scene construction algorithm. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 2260-2271.	1.0	7

#	Article	IF	CITATIONS
55	Assessing the quality of active–passive satellite retrievals using broadâ€band radiances. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 1294-1305.	1.0	7
56	4Dâ€Var Inversion of European NH ₃ Emissions Using CrIS NH ₃ Measurements and GEOSâ€Chem Adjoint With Biâ€Directional and Uniâ€Directional Flux Schemes. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	7
57	Data assimilation of CrIS NH ₃ satellite observations for improving spatiotemporal NH ₃ distributions in LOTOS-EUROS. Atmospheric Chemistry and Physics, 2022, 22, 951-972.	1.9	5
58	An ensemble-variational inversion system for the estimation of ammonia emissions using CrIS satellite ammonia retrievals. Atmospheric Chemistry and Physics, 2022, 22, 6595-6624.	1.9	3
59	Satellite observations of ammonia over South Asia. , 2022, , 227-237.		0