Seon Jeong Kim List of Publications by Year in descending order Source: https://exaly.com/author-pdf/3768544/publications.pdf Version: 2024-02-01 277 papers 14,479 citations 28190 55 h-index 24915 109 g-index 280 all docs 280 docs citations times ranked 280 15444 citing authors | # | Article | IF | CITATIONS | |----|--|------|-----------| | 1 | Artificial Muscles from Fishing Line and Sewing Thread. Science, 2014, 343, 868-872. | 6.0 | 1,006 | | 2 | Electrically, Chemically, and Photonically Powered Torsional and Tensile Actuation of Hybrid Carbon Nanotube Yarn Muscles. Science, 2012, 338, 928-932. | 6.0 | 585 | | 3 | Torsional Carbon Nanotube Artificial Muscles. Science, 2011, 334, 494-497. | 6.0 | 495 | | 4 | Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nature Communications, 2013, 4, 1970. | 5.8 | 475 | | 5 | Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson's ratio. Nature Communications, 2015, 6, 6141. | 5.8 | 458 | | 6 | Elastomeric Conductive Composites Based on Carbon Nanotube Forests. Advanced Materials, 2010, 22, 2663-2667. | 11.1 | 367 | | 7 | Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nature Communications, 2012, 3, 650. | 5.8 | 354 | | 8 | Flexible Supercapacitor Made of Carbon Nanotube Yarn with Internal Pores. Advanced Materials, 2014, 26, 2059-2065. | 11.1 | 345 | | 9 | Harvesting electrical energy from carbon nanotube yarn twist. Science, 2017, 357, 773-778. | 6.0 | 306 | | 10 | Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly(acrylic acid)., 1999, 73, 113-120. | | 259 | | 11 | Stretchable, Weavable Coiled Carbon Nanotube/MnO2/Polymer Fiber Solid-State Supercapacitors. Scientific Reports, 2015, 5, 9387. | 1.6 | 220 | | 12 | Sheath-run artificial muscles. Science, 2019, 365, 150-155. | 6.0 | 218 | | 13 | Rapid temperature/pH response of porous alginate-g-poly(N-isopropylacrylamide) hydrogels. Polymer, 2002, 43, 7549-7558. | 1.8 | 209 | | 14 | Swelling behavior of interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and chitosan. Reactive and Functional Polymers, 2003, 55, 53-59. | 2.0 | 209 | | 15 | Twistable and Stretchable Sandwich Structured Fiber for Wearable Sensors and Supercapacitors.
Nano Letters, 2016, 16, 7677-7684. | 4.5 | 202 | | 16 | Thermo- and pH-responsive behaviors of graft copolymer and blend based on chitosan and N-isopropylacrylamide. Journal of Applied Polymer Science, 2000, 78, 1381-1391. | 1.3 | 201 | | 17 | Nanocomposite Hydrogel with High Toughness for Bioactuators. Advanced Materials, 2009, 21, 1712-1715. | 11.1 | 197 | | 18 | Woven‥arn Thermoelectric Textiles. Advanced Materials, 2016, 28, 5038-5044. | 11.1 | 195 | | # | Article | IF | CITATIONS | |----|---|--------------|-----------| | 19 | Elastomeric and Dynamic MnO ₂ /CNT Core–Shell Structure Coiled Yarn Supercapacitor. Advanced Energy Materials, 2016, 6, 1502119. | 10.2 | 192 | | 20 | pH/temperature-responsive semi-IPN hydrogels composed of alginate and poly(N-isopropylacrylamide). Journal of Applied Polymer Science, 2002, 83, 1128-1139. | 1.3 | 187 | | 21 | Carbon Nanotube Yarn for Fiberâ€Shaped Electrical Sensors, Actuators, and Energy Storage for Smart Systems. Advanced Materials, 2020, 32, e1902670. | 11.1 | 165 | | 22 | High-power biofuel cell textiles from woven biscrolled carbon nanotube yarns. Nature Communications, 2014, 5, 3928. | 5. 8 | 147 | | 23 | Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors. Nature Communications, 2016, 7, 13811. | 5.8 | 146 | | 24 | Electrochemical actuation in chitosan/polyaniline microfibers for artificial muscles fabricated using an in situ polymerization. Sensors and Actuators B: Chemical, 2008, 129, 834-840. | 4.0 | 137 | | 25 | Suppression of transient receptor potential melastatin 7 channel induces cell death in gastric cancer. Cancer Science, 2008, 99, 2502-2509. | 1.7 | 120 | | 26 | Hybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk. Nature Communications, 2014, 5, 3322. | 5 . 8 | 120 | | 27 | Mechanical properties of chitosan/CNT microfibers obtained with improved dispersion. Sensors and Actuators B: Chemical, 2006, 115, 678-684. | 4.0 | 116 | | 28 | Stretchable Triboelectric Fiber for Self-powered Kinematic Sensing Textile. Scientific Reports, 2016, 6, 35153. | 1.6 | 111 | | 29 | Electrochemically Powered, Energyâ€Conserving Carbon Nanotube Artificial Muscles. Advanced Materials, 2017, 29, 1700870. | 11.1 | 110 | | 30 | Unipolar stroke, electroosmotic pump carbon nanotube yarn muscles. Science, 2021, 371, 494-498. | 6.0 | 110 | | 31 | Microscopically Buckled and Macroscopically Coiled Fibers for Ultraâ€Stretchable Supercapacitors. Advanced Energy Materials, 2017, 7, 1602021. | 10.2 | 106 | | 32 | Biomolecule based fiber supercapacitor for implantable device. Nano Energy, 2018, 47, 385-392. | 8.2 | 103 | | 33 | Temperature/pH-sensitive comb-type graft hydrogels composed of chitosan and poly(N-isopropylacrylamide). Journal of Applied Polymer Science, 2004, 92, 2612-2620. | 1.3 | 102 | | 34 | All-Solid-State Carbon Nanotube Torsional and Tensile Artificial Muscles. Nano Letters, 2014, 14, 2664-2669. | 4. 5 | 101 | | 35 | Size-dependent elastic modulus of single electroactive polymer nanofibers. Applied Physics Letters, 2006, 89, 231929. | 1.5 | 98 | Synthesis and characteristics of interpenetrating polymer network hydrogels composed of poly(vinyl) Tj ETQq $0.0 \frac{1}{2.0}$ ETQq $0.0 \frac{1}{2.0}$ Tf | # | Article | IF | CITATIONS | |----|--|------------|-----------------| | 37 | DNAâ€Wrapped Singleâ€Walled Carbon Nanotube Hybrid Fibers for supercapacitors and Artificial Muscles. Advanced Materials, 2008, 20, 466-470. | 11.1 | 90 | | 38 | Electric stimuli responses to poly(vinyl alcohol)/chitosan interpenetrating polymer network hydrogel in NaCl solutions. Journal of Applied Polymer Science, 2002, 86, 2285-2289. | 1.3 | 88 | | 39 | Flexible, stretchable and weavable piezoelectric fiber. Advanced Engineering Materials, 2015, 17, 1270-1275. | 1.6 | 84 | | 40 | Hybrid Nanomembranes for High Power and High Energy Density Supercapacitors and Their Yarn Application. ACS Nano, 2012, 6, 327-334. | 7.3 | 83 | | 41 | Electrical/pH-sensitive swelling behavior of polyelectrolyte hydrogels prepared with hyaluronic acid–poly(vinyl alcohol) interpenetrating polymer networks. Reactive and Functional Polymers, 2003, 55, 291-298. | 2.0 | 82 | | 42 | Self-Oscillatory Actuation at Constant DC Voltage with pH-Sensitive Chitosan/Polyaniline Hydrogel Blend. Chemistry of Materials, 2006, 18, 5805-5809. | 3.2 | 81 | | 43 | Clinical characteristics of <i>TIMP2</i> , <i>MMP2</i> , and <i>MMP9</i> gene polymorphisms in colorectal cancer. Journal of Gastroenterology and Hepatology (Australia), 2011, 26, 391-397. | 1.4 | 81 | | 44 | Enhanced conductivity of aligned PANi/PEO/MWNT nanofibers by electrospinning. Sensors and Actuators B: Chemical, 2008, 134, 122-126. | 4.0 | 79 | | 45 | A Linear Actuation of Polymeric Nanofibrous Bundle for Artificial Muscles. Chemistry of Materials, 2009, 21, 511-515. | 3.2 | 79 | | 46 | Thermal characteristics of chitin and hydroxypropyl chitin. Polymer, 1994, 35, 3212-3216. | 1.8 | 76 | | 47 | A novel "dual mode―actuation in chitosan/polyaniline/carbon nanotube fibers. Sensors and Actuators
B: Chemical, 2007, 121, 616-621. | 4.0 | 70 | | 48 | Permeation of solutes through interpenetrating polymer network hydrogels composed of poly(vinyl) Tj ETQq0 0 | 0 rgBT /Ον | verlock 10 Tf 5 | | 49 | Bio-inspired, Moisture-Powered Hybrid Carbon Nanotube Yarn Muscles. Scientific Reports, 2016, 6, 23016. | 1.6 | 66 | | 50 | pH-Dependent Structures of an i-Motif DNA in Solution. Journal of Physical Chemistry B, 2009, 113, 1852-1856. | 1.2 | 64 | | 51 | Behavior in electric fields of smart hydrogels with potential application as bio-inspired actuators.
Smart Materials and Structures, 2005, 14, 511-514. | 1.8 | 62 | | 52 | Hydrogel-Assisted Polyaniline Microfiber as Controllable Electrochemical Actuatable Supercapacitor. Journal of the Electrochemical Society, 2009, 156, A313. | 1.3 | 61 | | 53 | Self-healing graphene oxide-based composite for electromagnetic interference shielding. Carbon, 2019, 155, 499-505. | 5.4 | 60 | | 54 | Transient Receptor Potential Melastatin 7 Channels are Involved in Ginsenoside Rg3-Induced Apoptosis in Gastric Cancer Cells. Basic and Clinical Pharmacology and Toxicology, 2011, 109, 233-239. | 1.2 | 59 | | # | Article | IF | CITATIONS | |----|--|------------|----------------| | 55 | Swelling characterizations of chitosan and polyacrylonitrile semi-interpenetrating polymer network hydrogels. Journal of Applied Polymer Science, 2003, 87, 2011-2015. | 1.3 | 58 | | 56 | Properties of smart hydrogels composed of polyacrylic acid/poly(vinyl sulfonic acid) responsive to external stimuli. Smart Materials and Structures, 2004, 13, 317-322. | 1.8 | 58 | | 57 | Thermal characteristics of poly(vinyl alcohol) and poly(vinylpyrrolidone) IPNs. Journal of Applied Polymer Science, 2002, 86,
1844-1847. | 1.3 | 57 | | 58 | Synthesis and characteristics of a semi-interpenetrating polymer network based on chitosan/polyaniline under different pH conditions. Journal of Applied Polymer Science, 2005, 96, 867-873. | 1.3 | 57 | | 59 | Harvesting temperature fluctuations as electrical energy using torsional and tensile polymer muscles. Energy and Environmental Science, 2015, 8, 3336-3344. | 15.6 | 57 | | 60 | Effect of ionic salts on the processing of poly(2-acrylamido-2-methyl-1-propane sulfonic acid) nanofibers. Journal of Applied Polymer Science, 2005, 96, 1388-1393. | 1.3 | 56 | | 61 | Electromechanical properties of hydrogels based on chitosan and poly(hydroxyethyl methacrylate) in NaCl solution. Smart Materials and Structures, 2004, 13, 1036-1039. | 1.8 | 55 | | 62 | Electrodeposition of \hat{l} ±-MnO2/ \hat{l} 3-MnO2 on Carbon Nanotube for Yarn Supercapacitor. Scientific Reports, 2019, 9, 11271. | 1.6 | 55 | | 63 | Bending behavior of hydrogels composed of poly(methacrylic acid) and alginate by electrical stimulus. Polymer International, 2004, 53, 1456-1460. | 1.6 | 54 | | 64 | Surprising shrinkage of expanding gels under an external load. Nature Materials, 2006, 5, 48-51. | 13.3 | 54 | | 65 | Electrical response characterization of chitosan/polyacrylonitrile hydrogel in NaCl solutions.
Journal of Applied Polymer Science, 2003, 90, 91-96. | 1.3 | 53 | | 66 | DNA Hydrogel Fiber with Selfâ€Entanglement Prepared by Using an Ionic Liquid. Angewandte Chemie -
International Edition, 2008, 47, 2470-2474. | 7.2 | 53 | | 67 | Electrical/pH responsive properties of poly(2-acrylamido-2-methylpropane sulfonic acid)/hyaluronic acid hydrogels. Journal of Applied Polymer Science, 2004, 92, 1731-1736. | 1.3 | 52 | | 68 | Electroactive characteristics of interpenetrating polymer network hydrogels composed of poly(vinyl) Tj ETQq0 0 | 0 rgBT /Ov | erlock 10 Tf ! | | 69 | Characterization of the water state of hyaluronic acid and poly(vinyl alcohol) interpenetrating polymer networks. Journal of Applied Polymer Science, 2004, 92, 1467-1472. | 1.3 | 51 | | 70 | Electrical behavior of polymer hydrogel composed of poly(vinyl alcohol)–hyaluronic acid in solution. Biosensors and Bioelectronics, 2004, 19, 531-536. | 5.3 | 50 | | 71 | Carbon Nanotube Yarnâ€Based Glucose Sensing Artificial Muscle. Small, 2016, 12, 2085-2091. | 5.2 | 50 | | 72 | Electrochemical graphene/carbon nanotube yarn artificial muscles. Sensors and Actuators B: Chemical, 2019, 286, 237-242. | 4.0 | 50 | | # | Article | IF | Citations | |----|---|------|-----------| | 73 | Synthesis and characteristics of interpenetrating polymer network hydrogels composed of alginate and poly(diallydimethylammonium chloride). Journal of Applied Polymer Science, 2004, 91, 3705-3709. | 1.3 | 48 | | 74 | Fullerene Attachment Enhances Performance of a DNA Nanomachine. Advanced Materials, 2009, 21, 1907-1910. | 11.1 | 48 | | 75 | Alternative Nanostructures for Thermophones. ACS Nano, 2015, 9, 4743-4756. | 7.3 | 48 | | 76 | Controlled assembly of polymer nanofibers: From helical springs to fully extended. Applied Physics Letters, 2006, 88, 223109. | 1.5 | 47 | | 77 | Electrical sensitive behavior of poly(vinyl alcohol)/poly (diallyldimethylammonium chloride) IPN hydrogel. Sensors and Actuators B: Chemical, 2003, 88, 286-291. | 4.0 | 46 | | 78 | Electrical sensitivity behavior of a hydrogel composed of polymethacrylic acid/poly(vinyl alcohol). Journal of Applied Polymer Science, 2004, 91, 3613-3617. | 1.3 | 46 | | 79 | Direct fabrication of twisted nanofibers by electrospinning. Applied Physics Letters, 2007, 90, . | 1.5 | 46 | | 80 | Delaminated Tears of the Rotator Cuff: Prevalence, Characteristics, and Diagnostic Accuracy Using Indirect MR Arthrography. American Journal of Roentgenology, 2015, 204, 360-366. | 1.0 | 46 | | 81 | Biothermal sensing of a torsional artificial muscle. Nanoscale, 2016, 8, 3248-3253. | 2.8 | 46 | | 82 | Swelling characterization of the semiinterpenetrating polymer network hydrogels composed of chitosan and poly(diallyldimethylammonium chloride). Journal of Applied Polymer Science, 2004, 91, 2876-2880. | 1.3 | 45 | | 83 | Highly loaded MXene/carbon nanotube yarn electrodes for improved asymmetric supercapacitor performance. MRS Communications, 2019, 9, 114-121. | 0.8 | 45 | | 84 | Wearable Energy Generating and Storing Textile Based on Carbon Nanotube Yarns. Advanced Functional Materials, 2020, 30, 2000411. | 7.8 | 45 | | 85 | Electrical sensitive behavior of a polyelectrolyte complex composed of chitosan/hyaluronic acid. Solid State Ionics, 2003, 164, 199-204. | 1.3 | 44 | | 86 | Swelling Behavior of Chitosan Hydrogels in Ionic Liquidâ^'Water Binary Systems. Langmuir, 2006, 22, 9375-9379. | 1.6 | 44 | | 87 | Controlled Magnetic Nanofiber Hydrogels by Clustering Ferritin. Langmuir, 2008, 24, 12107-12111. | 1.6 | 44 | | 88 | A nanofibrous hydrogel templated electrochemical actuator: From single mat to a rolled-up structure. Sensors and Actuators B: Chemical, 2009, 136, 438-443. | 4.0 | 44 | | 89 | Single-Layer Graphene-Based Transparent and Flexible Multifunctional Electronics for Self-Charging Power and Touch-Sensing Systems. ACS Applied Materials & Samp; Interfaces, 2019, 11, 9301-9308. | 4.0 | 44 | | 90 | The influence of added ionic salt on nanofiber uniformity for electrospinning of electrolyte polymer. Synthetic Metals, 2005, 154, 209-212. | 2.1 | 43 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 91 | The role of transient receptor potential channel blockers in human gastric cancer cell viability. Canadian Journal of Physiology and Pharmacology, 2012, 90, 175-186. | 0.7 | 43 | | 92 | Weavable asymmetric carbon nanotube yarn supercapacitor for electronic textiles. RSC Advances, 2018, 8, 13112-13120. | 1.7 | 43 | | 93 | Characteristics of electrical responsive alginate/poly(diallyldimethylammonium chloride) IPN hydrogel in HCl solutions. Sensors and Actuators B: Chemical, 2003, 96, 1-5. | 4.0 | 41 | | 94 | Synthesis and characteristics of the interpenetrating polymer network hydrogel composed of chitosan and polyallylamine. Journal of Applied Polymer Science, 2002, 86, 498-503. | 1.3 | 40 | | 95 | Electrochemical behavior of an interpenetrating polymer network hydrogel composed of poly(propylene glycol) and poly(acrylic acid). Journal of Applied Polymer Science, 2003, 89, 2301-2305. | 1.3 | 38 | | 96 | Reinforcement of polymeric nanofibers by ferritin nanoparticles. Applied Physics Letters, 2006, 88, 193901. | 1.5 | 38 | | 97 | Tough Supersoft Sponge Fibers with Tunable Stiffness from a DNA Selfâ€Assembly Technique.
Angewandte Chemie - International Edition, 2009, 48, 5116-5120. | 7.2 | 37 | | 98 | Stretchable Fiber Biofuel Cell by Rewrapping Multiwalled Carbon Nanotube Sheets. Nano Letters, 2018, 18, 5272-5278. | 4.5 | 37 | | 99 | Self-Healing Electrode with High Electrical Conductivity and Mechanical Strength for Artificial Electronic Skin. ACS Applied Materials & Samp; Interfaces, 2019, 11, 46026-46033. | 4.0 | 37 | | 100 | Self-Powered Coiled Carbon-Nanotube Yarn Sensor for Gastric Electronics. ACS Sensors, 2019, 4, 2893-2899. | 4.0 | 37 | | 101 | Self-Helical Fiber for Glucose-Responsive Artificial Muscle. ACS Applied Materials & Samp; Interfaces, 2020, 12, 20228-20233. | 4.0 | 37 | | 102 | pH- and thermal characteristics of graft hydrogels based on chitosan and poly(dimethylsiloxane). Journal of Applied Polymer Science, 2002, 85, 2661-2666. | 1.3 | 36 | | 103 | Synthesis of conducting polymer-intercalated vanadate nanofiber composites using a sonochemical method for high performance pseudocapacitor applications. Journal of Power Sources, 2019, 414, 460-469. | 4.0 | 36 | | 104 | Synthesis of conducting
polyaniline in semi-IPN based on chitosan. Synthetic Metals, 2005, 154, 213-216. | 2.1 | 35 | | 105 | Thermally Responsive Torsional and Tensile Fiber Actuator Based on Graphene Oxide. ACS Applied Materials & Company (1988) (1988) Materials & Company (1988) (1988) Materials & Company (1988) (| 4.0 | 35 | | 106 | Swelling behavior of polyelectrolyte complex hydrogels composed of chitosan and hyaluronic acid. Journal of Applied Polymer Science, 2004, 93, 1097-1101. | 1.3 | 34 | | 107 | Ag/MnO2 Composite Sheath-Core Structured Yarn Supercapacitors. Scientific Reports, 2018, 8, 13309. | 1.6 | 34 | | 108 | Biscrolled Carbon Nanotube Yarn Structured Silver-Zinc Battery. Scientific Reports, 2018, 8, 11150. | 1.6 | 34 | | # | Article | IF | Citations | |-----|---|-----|-----------| | 109 | Enhancing the Work Capacity of Electrochemical Artificial Muscles by Coiling Plies of Twist-Released Carbon Nanotube Yarns. ACS Applied Materials & Samp; Interfaces, 2019, 11, 13533-13537. | 4.0 | 34 | | 110 | Involvement of Phosphatidylinositol 4,5-Bisphosphate in the Desensitization of Canonical Transient Receptor Potential 5. Biological and Pharmaceutical Bulletin, 2008, 31, 1733-1738. | 0.6 | 33 | | 111 | A conducting polymer/ferritin anode for biofuel cell applications. Electrochimica Acta, 2009, 54, 3979-3983. | 2.6 | 33 | | 112 | Preparation and characterization of thermosensitive poly(N-isopropylacrylamide)/poly(ethylene oxide) semi-interpenetrating polymer networks. Journal of Applied Polymer Science, 2003, 90, 3032-3036. | 1.3 | 32 | | 113 | Synthesis and characteristics of polyelectrolyte complexes composed of chitosan and hyaluronic acid. Journal of Applied Polymer Science, 2004, 91, 2908-2913. | 1.3 | 32 | | 114 | Electrical behavior of chitosan and poly(hydroxyethyl methacrylate) hydrogel in the contact system. Journal of Applied Polymer Science, 2004, 92, 915-919. | 1.3 | 31 | | 115 | Thermoresponsive hydrogels based on poly(N-isopropylacrylamide)/chondroitin sulfate. Sensors and Actuators B: Chemical, 2008, 135, 336-341. | 4.0 | 31 | | 116 | Bio-inspired Hybrid Carbon Nanotube Muscles. Scientific Reports, 2016, 6, 26687. | 1.6 | 31 | | 117 | Characterization of hydrogels based on chitosan and copolymer of poly(dimethylsiloxane) and poly(vinyl alcohol). Journal of Applied Polymer Science, 2002, 84, 2591-2596. | 1.3 | 30 | | 118 | Synthesis and characteristics of semi-interpenetrating polymer network hydrogels based on chitosan and poly(hydroxy ethyl methacrylate). Journal of Applied Polymer Science, 2005, 96, 86-92. | 1.3 | 30 | | 119 | Poncirus trifoliate fruit modulates pacemaker activity in interstitial cells of Cajal from the murine small intestine. Journal of Ethnopharmacology, 2013, 149, 668-675. | 2.0 | 30 | | 120 | Identification of TRPM7 channels in human intestinalinterstitial cells of Cajal. World Journal of Gastroenterology, 2009, 15, 5799. | 1.4 | 30 | | 121 | Shape change characteristics of polymer hydrogel based on polyacrylic acid/poly(vinyl sulfonic acid) in electric fields. Sensors and Actuators A: Physical, 2004, 115, 146-150. | 2.0 | 29 | | 122 | High-strength graphene and polyacrylonitrile composite fiber enhanced by surface coating with polydopamine. Composites Science and Technology, 2017, 149, 280-285. | 3.8 | 29 | | 123 | Swollen behavior of crosslinked network hydrogels based on poly(vinyl alcohol) and polydimethylsiloxane. Journal of Applied Polymer Science, 2002, 85, 957-964. | 1.3 | 28 | | 124 | Enhanced actuation of PPy/CNT hybrid fibers using porous structured DNA hydrogel. Sensors and Actuators B: Chemical, 2010, 145, 89-92. | 4.0 | 28 | | 125 | Swelling Kinetics of Interpenetrating Polymer Hydrogels Composed of Poly(Vinyl Alcohol)/Chitosan. Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 501-510. | 1.2 | 27 | | 126 | Electroactive polymer hydrogels composed of polyacrylic acid and poly(vinyl sulfonic acid) copolymer for application of biomaterial. Synthetic Metals, 2005, 155, 674-676. | 2.1 | 27 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 127 | Implantable Biosupercapacitor Inspired by the Cellular Redox System. Angewandte Chemie - International Edition, 2021, 60, 10563-10567. | 7.2 | 27 | | 128 | Molecular determinants of PKA-dependent inhibition of TRPC5 channel. American Journal of Physiology - Cell Physiology, 2011, 301, C823-C832. | 2.1 | 26 | | 129 | Carbon nanotubes–elastomer actuator driven electrothermally by low-voltage. Nanoscale Advances, 2019, 1, 965-968. | 2.2 | 26 | | 130 | Thermal characteristics of IPNs composed of polyallylamine and chitosan. Journal of Applied Polymer Science, 2002, 85, 1956-1960. | 1.3 | 25 | | 131 | Swelling kinetics of modified poly(vinyl alcohol) hydrogels. Journal of Applied Polymer Science, 2003, 90, 3310-3313. | 1.3 | 25 | | 132 | Triboelectric generator for wearable devices fabricated using a casting method. RSC Advances, 2016, 6, 10094-10098. | 1.7 | 25 | | 133 | Swelling Behavior of Semiâ€Interpenetrating Polymer Network Hydrogels Based on Chitosan and Poly(acryl amide). Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 1073-1083. | 1.2 | 24 | | 134 | Sziklai's conjecture on the number of points of a plane curve over a finite field III. Finite Fields and Their Applications, 2010, 16, 315-319. | 0.6 | 24 | | 135 | Positive feedback control between STIM1 and NFATc3 is required for C2C12 myoblast differentiation. Biochemical and Biophysical Research Communications, 2013, 430, 722-728. | 1.0 | 24 | | 136 | Highly stretchable hybrid nanomembrane supercapacitors. RSC Advances, 2016, 6, 24756-24759. | 1.7 | 24 | | 137 | Effect of C60 Fullerene on the Duplex Formation of i-Motif DNA with Complementary DNA in Solution. Journal of Physical Chemistry B, 2010, 114, 4783-4788. | 1.2 | 23 | | 138 | Cubic Interval-Valued Intuitionistic Fuzzy Sets and Their Application in BCK/BCI-Algebras. Axioms, 2018, 7, 7. | 0.9 | 23 | | 139 | Orthogonal pattern of spinnable multiwall carbon nanotubes for electromagnetic interference shielding effectiveness. Carbon, 2019, 152, 33-39. | 5.4 | 23 | | 140 | Water behavior of poly(vinyl alcohol)/poly(vinylpyrrolidone) interpenetrating polymer network hydrogels. Journal of Applied Polymer Science, 2003, 89, 24-27. | 1.3 | 22 | | 141 | Water sorption of poly(propylene glycol)/poly(acrylic acid) interpenetrating polymer network hydrogels. Reactive and Functional Polymers, 2003, 55, 69-73. | 2.0 | 22 | | 142 | Enhancement of electromagnetic interference shielding effectiveness with alignment of spinnable multiwalled carbon nanotubes. Carbon, 2019, 142, 528-534. | 5.4 | 22 | | 143 | Enhancement of the electromechanical behavior of IPMCs based on chitosan/polyaniline ion exchange membranes fabricated by freeze-drying. Smart Materials and Structures, 2005, 14, 889-894. | 1.8 | 21 | | 144 | Effects of Transient Receptor Potential Channel Blockers on Pacemaker Activity in Interstitial Cells of Cajal from Mouse Small Intestine. Molecules and Cells, 2011, 32, 153-160. | 1.0 | 21 | | # | Article | IF | Citations | |-----|---|------|-----------| | 145 | Comparison of localized retinal nerve fiber layer defects in highly myopic, myopic, and non-myopic patients with normal-tension glaucoma: a retrospective cross-sectional study. BMC Ophthalmology, 2013, 13, 67. | 0.6 | 21 | | 146 | Free-standing nanocomposites with high conductivity and extensibility. Nanotechnology, 2013, 24, 165401. | 1.3 | 21 | | 147 | Torsional behaviors of polymer-infiltrated carbon
nanotube yarn muscles studied with atomic force microscopy. Nanoscale, 2015, 7, 2489-2496. | 2.8 | 21 | | 148 | Stability of carbon nanotube yarn biofuel cell in human body fluid. Journal of Power Sources, 2015, 286, 103-108. | 4.0 | 21 | | 149 | Synthesis and characterization of ether-type chitin derivatives. Macromolecular Chemistry and Physics, 1994, 195, 1687-1693. | 1.1 | 20 | | 150 | Thermal characteristics of interpenetrating polymer networks composed of poly(vinyl alcohol) and poly(N-isopropylacrylamide). Journal of Applied Polymer Science, 2003, 90, 881-885. | 1.3 | 20 | | 151 | The effect of electric current on the processing of nanofibers formed from poly(2-acrylamido-2-methyl-1-propane sulfonic acid). Scripta Materialia, 2004, 51, 31-35. | 2.6 | 20 | | 152 | Around Sziklai's conjecture on the number of points of a plane curve over a finite field. Finite Fields and Their Applications, 2009, 15, 468-474. | 0.6 | 20 | | 153 | Interval Neutrosophic Sets with Applications in BCK/BCI-Algebra. Axioms, 2018, 7, 23. | 0.9 | 20 | | 154 | Bio-Inspired Stretchable and Contractible Tough Fiber by the Hybridization of GO/MWNT/Polyurethane. ACS Applied Materials & District Science (2019, 11, 31162-31168). | 4.0 | 20 | | 155 | Quasi-solid-state highly stretchable circular knitted MnO ₂ @CNT supercapacitor. RSC Advances, 2020, 10, 14007-14012. | 1.7 | 20 | | 156 | More Powerful Twistron Carbon Nanotube Yarn Mechanical Energy Harvesters. Advanced Materials, 2022, 34, e2201826. | 11.1 | 20 | | 157 | The fabrication of polyaniline/single-walled carbon nanotube fibers containing a highly-oriented filler. Nanotechnology, 2009, 20, 085701. | 1.3 | 19 | | 158 | Mediator-free carbon nanotube yarn biofuel cell. RSC Advances, 2016, 6, 48346-48350. | 1.7 | 19 | | 159 | Simple Artificial Neuron Using an Ovonic Threshold Switch Featuring Spike-Frequency Adaptation and Chaotic Activity. Physical Review Applied, 2020, 13, . | 1.5 | 19 | | 160 | Electrical energy harvesting from ferritin biscrolled carbon nanotube yarn. Biosensors and Bioelectronics, 2020, 164, 112318. | 5.3 | 19 | | 161 | Thermal Characteristics of Polyelectrolyte Complexes Composed of Chitosan and Hyaluronic Acid. Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 807-815. | 1.2 | 18 | | 162 | Synthesis and characterization of an interpenetrating polymer network composed of poly(methacrylic acid) and poly(vinyl alcohol). Polymer International, 2005, 54, 149-152. | 1.6 | 18 | | # | Article | IF | CITATIONS | |-----|--|-------------|----------------| | 163 | Molecular determinant of sensing extracellular pH in classical transient receptor potential channel 5. Biochemical and Biophysical Research Communications, 2008, 365, 239-245. | 1.0 | 17 | | 164 | An elementary bound for the number of points of a hypersurface over a finite field. Finite Fields and Their Applications, 2013, 20, 76-83. | 0.6 | 17 | | 165 | Magnetic torsional actuation of carbon nanotube yarn artificial muscle. RSC Advances, 2018, 8, 17421-17425. | 1.7 | 17 | | 166 | Electrostimulus responsive behavior of poly(acrylic acid)/polyacrylonitrile semi-interpenetrating polymer network hydrogels. Journal of Applied Polymer Science, 2004, 92, 1473-1477. | 1.3 | 16 | | 167 | Controlled Array of Ferritin in Tubular Nanostructure. Macromolecular Rapid Communications, 2008, 29, 552-556. | 2.0 | 16 | | 168 | Electrochemical properties of SWNT/ferritin composite for bioapplications. Sensors and Actuators B: Chemical, 2008, 133, 393-397. | 4.0 | 16 | | 169 | Temperature-Responsive Tensile Actuator Based on Multi-walled Carbon Nanotube Yarn. Nano-Micro
Letters, 2016, 8, 254-259. | 14.4 | 16 | | 170 | Optimum parameters for production of nanofibres based on poly(2-acrylamido-2-methyl-1-propane) Tj ETQq0 0 C |) rgBT /Ove | erlock 10 Tf 5 | | 171 | Role of calmodulin and myosin light chain kinase in the activation of carbachol-activated cationic current in murine ileal myocytes. Canadian Journal of Physiology and Pharmacology, 2007, 85, 1254-1262. | 0.7 | 15 | | 172 | Electrically Contractile Polymers Augment Right Ventricular Output in the Heart. Artificial Organs, 2014, 38, 1034-1039. | 1.0 | 15 | | 173 | Water and temperature response of semi-IPN hydrogels composed of chitosan and polyacrylonitrile.
Journal of Applied Polymer Science, 2003, 88, 2721-2724. | 1.3 | 14 | | 174 | Preparation and characteristics of poly(propylene glycol) and poly(acrylic acid) interpenetrating polymer network hydrogels. Journal of Applied Polymer Science, 2003, 90, 1384-1388. | 1.3 | 14 | | 175 | Swelling and electroresponsive characteristics of interpenetrating polymer network hydrogels. Polymer International, 2005, 54, 1169-1174. | 1.6 | 14 | | 176 | Controlled Nanofiber Composed of Multiâ€Wall Carbon Nanotube/Poly(Ethylene Oxide). Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 785-796. | 1.2 | 14 | | 177 | Preparation of chitosan microfibres using electro-wet-spinning and their electroactuation properties. Smart Materials and Structures, 2006, 15, 607-611. | 1.8 | 14 | | 178 | Effects of Imatinib Mesylate in Interstitial Cells of Cajal from Murine Small Intestine. Biological and Pharmaceutical Bulletin, 2010, 33, 993-997. | 0.6 | 14 | | 179 | Icilin induces G1 arrest through activating JNK and p38 kinase in a TRPM8-independent manner.
Biochemical and Biophysical Research Communications, 2011, 406, 30-35. | 1.0 | 14 | | 180 | Spinal Meningeal Melanocytoma with Benign Histology Showing Leptomeningeal Spread: Case Report.
Korean Journal of Radiology, 2013, 14, 470. | 1.5 | 14 | | # | Article | IF | CITATIONS | |-----|---|------------------------|----------------| | 181 | The characterization of Hermitian surfaces by the number of points. Journal of Geometry, 2016, 107, 509-521. | 0.1 | 14 | | 182 | Thermal Characterizations of Chitosan and Polyacrylonitrile Semi-Interpenetrating Polymer Networks. High Performance Polymers, 2002, 14, 309-316. | 0.8 | 13 | | 183 | Properties of interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and poly(N-isopropylacrylamide). Journal of Applied Polymer Science, 2003, 89, 2041-2045. | 1.3 | 13 | | 184 | Effects of San-Huang-Xie-Xin-tang, a traditional Chinese prescription for clearing away heat and toxin, on the pacemaker activities of interstitial cells of Cajal from the murine small intestine. Journal of Ethnopharmacology, 2014, 155, 744-752. | 2.0 | 13 | | 185 | Implicative ?-ideals of BCK-algebras based on neutrosophic ?-structures. Discrete Mathematics, Algorithms and Applications, 2019, 11, 1950011. | 0.4 | 13 | | 186 | Synthesis and Characterization of Polymeric Acidâ€Doped Polyaniline Interpenetrating Polymer Networks. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 497-505. | 1.2 | 12 | | 187 | Temperature and pH-response swelling behavior of poly(2-ethyl-2-oxazoline)/chitosan interpenetrating polymer network hydrogels. Journal of Applied Polymer Science, 2006, 99, 1100-1103. | 1.3 | 12 | | 188 | Volume behavior of interpenetrating polymer network hydrogels composed of polyacrylic acid-co-poly(vinyl sulfonic acid)/polyaniline as an actuator. Smart Materials and Structures, 2006, 15, 1882-1886. | 1.8 | 12 | | 189 | A tough nanofiber hydrogel incorporating ferritin. Applied Physics Letters, 2008, 93, . | 1.5 | 12 | | 190 | DNA-coated MWNT microfibers for electrochemical actuator. Sensors and Actuators B: Chemical, 2012, 162, 173-177. | 4.0 | 12 | | 191 | High toughness of bio-inspired multistrand coiled carbon nanotube yarn. Carbon, 2018, 131, 60-65. | 5.4 | 12 | | 192 | Biomimetic cell-actuated artificial muscle with nanofibrous bundles. Microsystems and Nanoengineering, 2021, 7, 70. | 3.4 | 12 | | 193 | Flexible Two-ply Piezoelectric Yarn Energy Harvester. Current Nanoscience, 2015, 11, 539-544. | 0.7 | 12 | | 194 | Thermal characterizations of semi-interpenetrating polymer networks composed of poly(ethylene) Tj ETQq0 0 0 | rgBT ₃ /Ove | rlock 10 Tf 50 | | 195 | Thermoâ€sensitive Swelling Behavior of Poly(2â€Ethylâ€2â€oxazoline)/Poly(Vinyl Alcohol) Interpenetrating Polymer Network Hydrogels. Journal of Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 267-274. | 1.2 | 11 | | 196 | Harvesting electrical energy from torsional thermal actuation driven by natural convection. Scientific Reports, 2018, 8, 8712. | 1.6 | 11 | | 197 | Bidirectional Core Sandwich Structure of Reduced Graphene Oxide and Spinnable Multiwalled Carbon Nanotubes for Electromagnetic Interference Shielding Effectiveness. ACS Applied Materials & Amp; Interfaces, 2020, 12, 46883-46891. | 4.0 | 11 | | 198 | Two-Ply Carbon Nanotube Fiber-Typed Enzymatic Biofuel Cell Implanted in Mice. IEEE Transactions on Nanobioscience, 2020, 19, 333-338. | 2.2 | 11 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 199 | Self-Powered Inertial Sensor Based on Carbon Nanotube Yarn. IEEE Transactions on Industrial Electronics, 2021, 68, 8904-8910. | 5.2 | 11 | | 200 | Water sorption of poly(vinyl alcohol)/ poly(diallyldimethylammonium chloride) interpenetrating polymer network hydrogels. Journal of Applied Polymer Science, 2003, 90, 1389-1392. | 1.3 | 10 | | 201 | Functional Characteristics of TRPC4 Channels Expressed in HEK 293 Cells. Molecules and Cells, 2009,
27, 167-173. | 1.0 | 10 | | 202 | Electrocatalytic characteristics of electrodes based on ferritin/carbon nanotube composites for biofuel cells. Sensors and Actuators B: Chemical, 2011, 160, 384-388. | 4.0 | 10 | | 203 | Conductive functional biscrolled polymer and carbon nanotube yarns. RSC Advances, 2013, 3, 24028. | 1.7 | 10 | | 204 | Nonsingular plane filling curves of minimum degree over a finite field and their automorphism groups: Supplements to a work of Tallini. Linear Algebra and Its Applications, 2013, 438, 969-985. | 0.4 | 10 | | 205 | High performance electrochemical and electrothermal artificial muscles from twist-spun carbon nanotube yarn. Nano Convergence, 2015, 2, . | 6.3 | 10 | | 206 | Self-Powered Carbon Nanotube Yarn for Acceleration Sensor Application. IEEE Transactions on Industrial Electronics, 2021, 68, 2676-2683. | 5.2 | 10 | | 207 | Sorption characterization of poly(vinyl alcohol)/chitosan interpenetrating polymer network hydrogels. Journal of Applied Polymer Science, 2003, 90, 86-90. | 1.3 | 9 | | 208 | Effect of the water state on the electrical bending behavior of chitosan/poly(diallyldimethylammonium chloride) hydrogels in NaCl solutions. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 914-921. | 2.4 | 9 | | 209 | Shape-engineerable composite fibers and their supercapacitor application. Nanoscale, 2016, 8, 1910-1914. | 2.8 | 9 | | 210 | Biomimetic Thermal-sensitive Multi-transform Actuator. Scientific Reports, 2019, 9, 7905. | 1.6 | 9 | | 211 | Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly(acrylic acid). Journal of Applied Polymer Science, 1999, 73, 113. | 1.3 | 8 | | 212 | Properties of the Interpenetrating Polymer Network Hydrogels Composed of Poly(vinyl alcohol) and Poly(diallyldimethylammonium chloride). High Performance Polymers, 2002, 14, 261-269. | 0.8 | 7 | | 213 | Swelling Characterizations of the Interpenetrating Polymer Network Hydrogels Composed of Polymethacrylic Acid and Alginate. Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 811-820. | 1.2 | 7 | | 214 | Toward determination of optimal plane curves with a fixed degree over a finite field. Finite Fields and Their Applications, 2011, 17, 240-253. | 0.6 | 7 | | 215 | Fabricating a Continuous Fiber Silverâ€Zinc Battery with Microâ€Sized Diameter. ChemElectroChem, 2018, 5, 3361-3367. | 1.7 | 7 | | 216 | Electrochemical analysis of the reduction of ferritin using oxidized methyl viologen. Journal of Electroanalytical Chemistry, 2006, 598, 22-26. | 1.9 | 6 | | # | Article | IF | CITATIONS | |-----|--|-----------|-----------------| | 217 | The effect of DNA on mechanical properties of nanofiber hydrogels. Applied Physics Letters, 2008, 93, . | 1.5 | 6 | | 218 | The Peculiar Response of DNA Hydrogel Fibers to a Salt and pH Stimulus. Macromolecular Rapid Communications, 2009, 30, 430-434. | 2.0 | 6 | | 219 | Variability of Residual Currents and Waves in Haeundae Using Long-term Observed AWAC Data. Journal of Coastal Research, 2014, 72, 166-172. | 0.1 | 6 | | 220 | Number of points of a nonsingular hypersurface in an odd-dimensional projective space. Finite Fields and Their Applications, 2017, 48, 395-419. | 0.6 | 6 | | 221 | Poly(N-isopropylacrylamide) Hydrogel for Diving/Surfacing Device. Micromachines, 2021, 12, 210. | 1.4 | 6 | | 222 | Preparation and characterizations of interpenetrating polymer network hydrogels of poly(ethylene) Tj ETQq0 0 0 | rgBJ /Ove | erlock 10 Tf 50 | | 223 | Hysteresis in a Carbon Nanotube Based Electroactive Polymer Microfiber Actuator: Numerical Modeling. Journal of Nanoscience and Nanotechnology, 2007, 7, 3974-3979. | 0.9 | 5 | | 224 | The optimum functionalization of carbon nanotube/ferritin composites. Smart Materials and Structures, 2008, 17, 045029. | 1.8 | 5 | | 225 | Giant somatosensory evoked potential in a patient with shaking TIA. Movement Disorders, 2009, 24, 2301-2303. | 2.2 | 5 | | 226 | Numbers of points of surfaces in the projective 3-space over finite fields. Finite Fields and Their Applications, 2015, 35, 52-60. | 0.6 | 5 | | 227 | Length-Fuzzy Subalgebras in BCK/BCI-Algebras. Mathematics, 2018, 6, 11. | 1.1 | 5 | | 228 | MnO ₂ /PtNP Embedded Wetâ€Spun Fiber Supercapacitors. Advanced Materials Technologies, 2018, 3, 1800184. | 3.0 | 5 | | 229 | Mode shifting shape memory polymer and hydrogel composite fiber actuators for soft robots.
Sensors and Actuators A: Physical, 2022, 342, 113619. | 2.0 | 5 | | 230 | Water Behavior of Poly(acrylic acid)/ Poly (acrylonitrile) Semi-Interpenetrating Polymer Network Hydrogels. High Performance Polymers, 2004, 16, 625-635. | 0.8 | 4 | | 231 | The fabrication of polymeric nanochannels by electrospinning. Nanotechnology, 2008, 19, 195304. | 1.3 | 4 | | 232 | Characterization of ferritin core on redox reactions as a nanocomposite for electron transfer. Electrochimica Acta, 2010, 55, 3486-3490. | 2.6 | 4 | | 233 | Involvement of Calmodulin Kinase II in the Action of Sulphur Mustard on the Contraction of Vascular Smooth Muscle. Basic and Clinical Pharmacology and Toxicology, 2011, 108, 28-33. | 1.2 | 4 | | 234 | Desmoplastic Fibroma of Bone in a Toe: Radiographic and MRI Findings. Korean Journal of Radiology, 2013, 14, 963. | 1.5 | 4 | | # | Article | IF | Citations | |-----|---|--|-------------------------| | 235 | Carbon Nanotube Yarn: Carbon Nanotube Yarn for Fiberâ€Shaped Electrical Sensors, Actuators, and Energy Storage for Smart Systems (Adv. Mater. 5/2020). Advanced Materials, 2020, 32, 2070034. | 11.1 | 4 | | 236 | Electrochemical pH Oscillations of Ethyl Viologen/Ionic Liquid. Langmuir, 2008, 24, 3562-3565. | 1.6 | 3 | | 237 | The uniqueness of a plane curve of degree q attaining SzikiaiŁ44s bound over <mmi:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="double-struck">F</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:msub></mmi:math> | 0.6
nsub> <td>3
nl:math>.</td> | 3
nl:math>. | | 238 | Weierstrass semigroups on double covers of genus 4 curves. Journal of Algebra, 2014, 405, 142-167. | 0.4 | 3 | | 239 | Residual Charges during Electrospinning Assist in Formation of Piezoelectricity in Poly(Vinylidene) Tj ETQq1 1 0.78 | 4314 rgB ⁷ | Г _ქ Overlock | | 240 | Tensile actuators of carbon nanotube coiled yarn based on polydiacetylene–pluronic copolymers as temperature indicators. Smart Materials and Structures, 2016, 25, 075021. | 1.8 | 3 | | 241 | Reversible Redox Activity by Ion-pH Dually Modulated Duplex Formation of i-Motif DNA with Complementary G-DNA. Nanomaterials, 2018, 8, 226. | 1.9 | 3 | | 242 | Neutrosophic Quadruple BCI-Positive Implicative Ideals. Mathematics, 2019, 7, 385. | 1.1 | 3 | | 243 | Large Intraluminal Ileal Hematoma Presenting as Small Bowel Obstruction in a Child. Iranian Journal of Radiology, 2015, 12, e8212. | 0.1 | 3 | | 244 | Thermal properties of poly(vinyl alcohol)/poly(diallyldi-methylammonium chloride) interpenetrating polymer networks. Journal of Applied Polymer Science, 2003, 88, 1346-1349. | 1.3 | 2 | | 245 | Thermal characteristics of IPNs composed of poly(propylene glycol) and poly(acrylic acid). Journal of Applied Polymer Science, 2003, 88, 2570-2574. | 1.3 | 2 | | 246 | Water Sorption of Interpenetrating Polymer Network Hydrogels Composed of Poly(Ethylene Oxide) and Poly(Methyl Methacrylate). High Performance Polymers, 2004, 16, 515-523. | 0.8 | 2 | | 247 | Anomalous pH Actuation of a Chitosan/SWNT Microfiber Hydrogel with Improved Mechanical Property. Materials Research Society Symposia Proceedings, 2006, 915, 1. | 0.1 | 2 | | 248 | The Weierstrass semigroups on the quotient curve of a plane curve of degree ≠¦ 7 by an involution. Journal of Algebra, 2009, 322, 137-152. | 0.4 | 2 | | 249 | The second largest number of points on plane curves over finite fields. Finite Fields and Their Applications, 2018, 49, 80-93. | 0.6 | 2 | | 250 | Cochlear Implantation in a Patient With Sickle Cell Disease With Early Cochlear Sclerosis. Otology and Neurotology, 2018, 39, e87-e89. | 0.7 | 2 | | 251 | Implantable Biosupercapacitor Inspired by the Cellular Redox System. Angewandte Chemie, 2021, 133, 10657-10661. | 1.6 | 2 | | 252 | Characterization of smart hydrogels for biometric sensors and actuators. , 0, , . | | 1 | | # | Article | IF | CITATIONS | |-----|--|-----------|---------------| | 253 | Fabrication of Polymeric Composite Nanostructures Containing Ferritin Nanoparticles and Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2006, 921, 1. | 0.1 | 1 | | 254 | Redox Reactions of Bio Molecule for Nano-bio Battery. Materials Research Society Symposia Proceedings, 2006, 915, 1. | 0.1 | 1 | | 255 | Alignment of Polymeric Nanofibers Using a Filtering Effect. Journal of Nanoscience and Nanotechnology, 2008, 8, 5404-5407. | 0.9 | 1 | | 256 | Weierstrass semigroups on double covers of plane curves of degree 5. Kodai Mathematical Journal, 2015, 38, . | 0.3 | 1 | | 257 | Artificial Muscle: Carbon Nanotube Yarn-Based Glucose Sensing Artificial Muscle (Small 15/2016).
Small, 2016, 12, 2100-2100. | 5.2 | 1 | | 258 | Supercapacitors: Elastomeric and Dynamic MnO ₂ /CNT Core–Shell Structure Coiled Yarn
Supercapacitor (Adv. Energy Mater. 5/2016). Advanced Energy Materials, 2016, 6, . | 10.2 | 1 | | 259 | Ultraviolet-induced irreversible tensile actuation of diacetylene/nylon microfibers. Smart Materials and Structures, 2016, 25, 075031. | 1.8 | 1 | | 260 | Supercapacitors: Microscopically Buckled and Macroscopically Coiled Fibers for Ultraâ€Stretchable Supercapacitors (Adv. Energy Mater. 6/2017). Advanced Energy Materials, 2017, 7, . | 10.2 | 1 | | 261 | Distances between hyper structures and length fuzzy ideals of BCK/BCI-algebras based on hyper structures. Journal of Intelligent and Fuzzy Systems, 2018, 35, 2257-2268. | 0.8 | 1 | | 262 | Thermal properties of poly(vinyl alcohol)/poly(diallyldimethylammonium chloride) interpenetrating polymer networks. Journal of Applied Polymer Science, 2003, 88, 2719-2719. | 1.3 | 0 | | 263 | Polyacrylic acid/poly(vinyl sulfonic acid, sodium salt) copolymer hydrogel actuator under an electric field., 2004, 5385, 475. | | 0 | | 264 | Swelling Behavior of Chitosan Hydrogel in Ionic Liquid-Water Binary System. Materials Research Society Symposia Proceedings, 2006, 915, 1. | 0.1 | 0 | | 265 | Measurement of mechanical properties of nanometer scale polymer structures using atomic force microscope., 2006,,. | | 0 | | 266 | Artifical Muscles: Nanocomposite Hydrogel with High Toughness for Bioactuators (Adv. Mater.) Tj ETQq0 0 0 rgB1 | | 2 10 Tf 50 22 | | 267 | DNA Hybrid Nanomachines: Fullerene Attachment Enhances Performance of a DNA Nanomachine (Adv.) Tj ETQq1 | 1,0.78431 | l4 rgBT /Cve | | 268 | Macromol. Rapid Commun. 6/2009. Macromolecular Rapid Communications, 2009, 30, NA-NA. | 2.0 | 0 | | 269 | Three families of multiple blocking sets in Desarguesian projective planes of even order. Designs, Codes, and Cryptography, 2013, 68, 49-59. | 1.0 | O | | 270 | On the minimum number of points covered by a set of lines in $PG(2, q)$ PG(2, q). Designs, Codes, and Cryptography, 2015, 74, 59-74. | 1.0 | O | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 271 | Electrothermally Driven Carbon-Based Materials as EAPs: Fundamentals and Device Configurations. , 2016, , 455-470. | | О | | 272 | On a number of rational points on a plane curve of low degree. Discrete Mathematics, 2017, 340, 1327-1334. | 0.4 | 0 | | 273 | N-Hyper Sets. Mathematics, 2018, 6, 87. | 1.1 | О | | 274 | A Case of "Calcified―Schwannoma. Otology and Neurotology, 2018, 39, e511-e512. | 0.7 | 0 | | 275 | Event and Its Application in Algebraic Structures. New Mathematics and Natural Computation, 2020, 16, 105-121. | 0.4 | O | | 276 | PLANE CURVES MEETING AT A POINT WITH HIGH INTERSECTION MULTIPLICITY. The Pure and Applied Mathematics, 2016, 23, 309-317. | 0.0 | 0 | | 277 | A CONSTRUCTION OF TWO-WEIGHT CODES AND ITS APPLICATIONS. Bulletin of the Korean Mathematical Society, 2017, 54, 731-736. | 0.3 | 0 |