
Peter S Searles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3768507/publications.pdf Version: 2024-02-01

DETED S SEADLES

#	Article	IF	CITATIONS
1	Oil yield components and biomass production responses to warming during the oil accumulation phase in young olive trees. Scientia Horticulturae, 2022, 291, 110618.	1.7	6
2	Influence of environmental growth temperature on tocopherol and sterol oil concentrations in olive fruit. Journal of the Science of Food and Agriculture, 2022, 102, 2741-2749.	1.7	9
3	Thermal regime and cultivar effects on squalene and sterol contents in olive fruits: Results from a field network in different Argentinian environments. Scientia Horticulturae, 2022, 303, 111230.	1.7	5
4	Spring reproductive and vegetative phenology of olive (Olea europaea L.) cultivars at different air temperatures along a latitudinal-altitudinal gradient in Argentina. Scientia Horticulturae, 2022, 304, 111327.	1.7	6
5	Yield and water productivity responses of olive trees (cv. Manzanilla) to post-harvest deficit irrigation in a non-Mediterranean climate. Agricultural Water Management, 2021, 245, 106562.	2.4	5
6	Effects of prolonged elevated temperature on leaf gas exchange and other leaf traits in young olive trees. Tree Physiology, 2021, 41, 254-268.	1.4	10
7	Light Quality Environment and Photomorphological Responses of Young Olive Trees. Horticulturae, 2021, 7, 369.	1.2	6
8	Establishing a Reference Baseline for Midday Stem Water Potential in Olive and Its Use for Plant-Based Irrigation Management. Frontiers in Plant Science, 2021, 12, 791711.	1.7	14
9	Fatty acid composition of olive oil in response to fruit canopy position and artificial shading. Scientia Horticulturae, 2020, 271, 109477.	1.7	10
10	Complementary active heating methods for evaluating the responses of young olive trees to warming. Scientia Horticulturae, 2019, 257, 108754.	1.7	8
11	Sap Flow Responses to Warming and Fruit Load in Young Olive Trees. Frontiers in Plant Science, 2019, 10, 1199.	1.7	11
12	Responses of shoot growth, return flowering, and fruit yield to post-pruning practices and growth regulator application in olive trees. Scientia Horticulturae, 2019, 254, 163-171.	1.7	4
13	Estimation of stomatal conductance and stem water potential threshold values for water stress in olive trees (cv. Arbequina). Irrigation Science, 2019, 37, 461-467.	1.3	36
14	Olive oil quality response to irrigation cut-off strategies in a super-high density orchard. Agricultural Water Management, 2018, 202, 81-88.	2.4	31
15	Fruit, mesocarp, and endocarp responses to crop load and to different estimates of source: sink ratio in olive (cv. Arauco) at final harvest. Scientia Horticulturae, 2018, 234, 49-57.	1.7	14
16	Impact of simulated mechanical hedge pruning and wood age on new shoot demography and return flowering in olive trees. Trees - Structure and Function, 2018, 32, 1767-1777.	0.9	9
17	Responses of vegetative growth and fruit yield to winter and summer mechanical pruning in olive trees. Scientia Horticulturae, 2017, 225, 185-194.	1.7	28
18	Yield and Water Productivity Responses to Irrigation Cut-off Strategies after Fruit Set Using Stem Water Potential Thresholds in a Super-High Density Olive Orchard. Frontiers in Plant Science, 2017, 8, 1280.	1.7	62

PETER S SEARLES

#	Article	IF	CITATIONS
19	Olive Cultivation in the Southern Hemisphere: Flowering, Water Requirements and Oil Quality Responses to New Crop Environments. Frontiers in Plant Science, 2017, 8, 1830.	1.7	95
20	Responses of several soil and plant indicators to post-harvest regulated deficit irrigation in olive trees and their potential for irrigation scheduling. Agricultural Water Management, 2016, 171, 10-20.	2.4	33
21	Responses of olive tree yield determinants and components to shading during potentially critical phenological phases. Scientia Horticulturae, 2015, 184, 70-77.	1.7	17
22	Dynamics of shoot and fruit growth following fruit thinning in olive trees: Same season and subsequent season responses. Scientia Horticulturae, 2015, 192, 320-330.	1.7	24
23	Evaluation of olive flowering at low latitude sites in Argentina using a chilling requirement model. Spanish Journal of Agricultural Research, 2015, 13, e0901.	0.3	35
24	Structure, management and productivity of hedgerow olive orchards: A review. Scientia Horticulturae, 2014, 169, 71-93.	1.7	154
25	Contrasting patterns of fatty acid composition and oil accumulation during fruit growth in several olive varieties and locations in a non-Mediterranean region. European Journal of Agronomy, 2014, 52, 237-246.	1.9	97
26	Soil evaporation beneath and between olive trees in a non-Mediterranean climate under two contrasting irrigation regimes. Journal of Arid Environments, 2013, 97, 182-189.	1.2	4
27	Influence of light environment on yield determinants and components in large olive hedgerows following mechanical pruning in the subtropics of the Southern Hemisphere. Scientia Horticulturae, 2012, 137, 36-42.	1.7	50
28	Fatty acid profiles of varietal virgin olive oils (<i>Olea europaea</i> L.) from mature orchards in warm arid valleys of Northwestern Argentina (La Rioja). Grasas Y Aceites, 2011, 62, 399-409.	0.3	83
29	Plant growth and yield responses in olive (Olea europaea) to different irrigation levels in an arid region of Argentina. Agricultural Water Management, 2010, 97, 1829-1837.	2.4	62
30	Seasonal variations in sap flow and soil evaporation in an olive (Olea europaea L.) grove under two irrigation regimes in an arid region of Argentina. Agricultural Water Management, 2009, 96, 1037-1044.	2.4	65
31	Root length density and soil water distribution in drip-irrigated olive orchards in Argentina under arid conditions. Crop and Pasture Science, 2009, 60, 280.	0.7	27
32	Leaf-level responses of olive trees (Olea europaea) to the suspension of irrigation during the winter in an arid region of Argentina. Scientia Horticulturae, 2008, 115, 135-141.	1.7	31
33	Field Testing of Biological Spectral Weighting Functions for Induction of UV-absorbing Compounds in Higher Plantsâ€Â¶. Photochemistry and Photobiology, 2004, 79, 399.	1.3	40
34	Growth responses to ultraviolet-B radiation of two Carex species dominating an Argentinian fen ecosystem. Basic and Applied Ecology, 2004, 5, 153-162.	1.2	10
35	Solar UV-B radiation affects leaf quality and insect herbivory in the southern beech tree Nothofagus antarctica. Oecologia, 2004, 138, 505-512.	0.9	98
36	Field Testing of Biological Spectral Weighting Functions for Induction of UVâ€absorbing Compounds in Higher Plants ^{â€} [¶] . Photochemistry and Photobiology, 2004, 79, 399-403.	1.3	2

PETER S SEARLES

#	Article	IF	CITATIONS
37	Plant Responses to Current Solar Ultravioletâ€B Radiation and to Supplemented Solar Ultravioletâ€B Radiation Simulating Ozone Depletion: An Experimental Comparison [¶] . Photochemistry and Photobiology, 2004, 80, 224-230.	1.3	7
38	Plant Responses to Current Solar Ultraviolet-B Radiation and to Supplemented Solar Ultraviolet-B Radiation Simulating Ozone Depletion: An Experimental Comparison¶. Photochemistry and Photobiology, 2004, 80, 224.	1.3	46
39	Plant responses to current solar ultraviolet-B radiation and to supplemented solar ultraviolet-B radiation simulating ozone depletion: an experimental comparison. Photochemistry and Photobiology, 2004, 80, 224-30.	1.3	11
40	Title is missing!. Plant Ecology, 2003, 169, 43-51.	0.7	10
41	Nitrate photo-assimilation in tomato leaves under short-term exposure to elevated carbon dioxide and low oxygen. Plant, Cell and Environment, 2003, 26, 1247-1255.	2.8	52
42	Nitrogen assimilation and growth of wheat under elevated carbon dioxide. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1730-1735.	3.3	193
43	Plant response to solar ultraviolet-B radiation in a southern South American Sphagnum peatland. Journal of Ecology, 2002, 90, 704-713.	1.9	68
44	A meta-analysis of plant field studies simulating stratospheric ozone depletion. Oecologia, 2001, 127, 1-10.	0.9	430
45	Responses to solar ultraviolet-B radiation in a shrub-dominated natural ecosystem of Tierra del Fuego (southern Argentina). Clobal Change Biology, 2001, 7, 467-478.	4.2	61
46	Impacts of solar ultraviolet-B radiation on terrestrial ecosystems of Tierra del Fuego (southern) Tj ETQq0 0 0 rgB	T /Qverloc 1.7	k 10 Tf 50 38 140
47	Influence of solar UV-B radiation on peatland microbial communities of southern Argentinia. New Phytologist, 2001, 152, 213-221.	3.5	70
48	Non-invasive measurements of leaf epidermal transmittance of UV radiation using chlorophyll fluorescence: field and laboratory studies. Physiologia Plantarum, 2000, 109, 274-283.	2.6	68
49	Ozone depletion and UVB radiation: Impact on plant DNA damage in southern South America. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 15310-15315.	3.3	131
50	Solar ultravioletâ€B radiation influence on Sphagnum bog and Carex fen ecosystems: first field season findings in Tierra del Fuego, Argentina. Global Change Biology, 1999, 5, 225-234.	4.2	74
51	Solar ultraviolet-B radiation affects plant-insect interactions in a natural ecosystem of Tierra del Fuego (southern Argentina). Oecologia, 1998, 116, 528-535.	0.9	114
52	The response of five tropical dicotyledon species to solar ultravioletâ€B radiation. American Journal of Botany, 1995, 82, 445-453.	0.8	94
53	The response of five tropical dicotyledon species to solar ultraviolet-B radiation. , 1995, 82, 445.		46
54	Spectral balance and UV-B sensitivity of soybean: a field experiment. Plant, Cell and Environment, 1994, 17, 267-276.	2.8	205