James A Pearson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3768345/publications.pdf

Version: 2024-02-01

759233 526287 29 782 12 27 h-index citations g-index papers 32 32 32 1218 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The importance of the Non Obese Diabetic (NOD) mouse model in autoimmune diabetes. Journal of Autoimmunity, 2016, 66, 76-88.	6.5	227
2	NLRP3 deficiency protects from type 1 diabetes through the regulation of chemotaxis into the pancreatic islets. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11318-11323.	7.1	109
3	TRIF deficiency protects non-obese diabetic mice from type 1 diabetes by modulating the gut microbiota and dendritic cells. Journal of Autoimmunity, 2018, 93, 57-65.	6.5	58
4	Gut microbial metabolites alter IgA immunity in type 1 diabetes. JCI Insight, 2020, 5 , .	5 . O	53
5	Nucleotide-binding oligomerization domain-containing protein 2 (Nod2) modulates T1DM susceptibility by gut microbiota. Journal of Autoimmunity, 2017, 82, 85-95.	6.5	36
6	Norovirus Changes Susceptibility to Type 1 Diabetes by Altering Intestinal Microbiota and Immune Cell Functions. Frontiers in Immunology, 2019, 10, 2654.	4.8	35
7	Distortion of the Major Histocompatibility Complex Class I Binding Groove to Accommodate an Insulin-derived 10-Mer Peptide. Journal of Biological Chemistry, 2015, 290, 18924-18933.	3.4	28
8	Altered Gut Microbiota Activate and Expand Insulin B15-23–Reactive CD8+ T Cells. Diabetes, 2019, 68, 1002-1013.	0.6	28
9	Targeted suppression of autoreactive CD8+ T-cell activation using blocking anti-CD8 antibodies. Scientific Reports, 2016, 6, 35332.	3.3	27
10	Crosstalk between circadian rhythms and the microbiota. Immunology, 2020, 161, 278-290.	4.4	26
11	Toll-like receptor 9 negatively regulates pancreatic islet beta cell growth and function in a mouse model of type 1 diabetes. Diabetologia, 2018, 61, 2333-2343.	6.3	24
12	Peripheral Proinsulin Expression Controls Low-Avidity Proinsulin-Reactive CD8 T Cells in Type 1 Diabetes. Diabetes, 2016, 65, 3429-3439.	0.6	19
13	Toll-like receptor 7 deficiency suppresses type 1 diabetes development by modulating B-cell differentiation and function. Cellular and Molecular Immunology, 2021, 18, 328-338.	10.5	13
14	IL-10 Deficiency Accelerates Type 1 Diabetes Development via Modulation of Innate and Adaptive Immune Cells and Gut Microbiota in BDC2.5 NOD Mice. Frontiers in Immunology, 2021, 12, 702955.	4.8	13
15	Modulation of the immune system by the gut microbiota in the development of type 1 diabetes. Human Vaccines and Immunotherapeutics, 2018, 14, 1-17.	3.3	11
16	Circadian Rhythm Modulation of Microbes During Health and Infection. Frontiers in Microbiology, 2021, 12, 721004.	3 . 5	10
17	Proinsulin Expression Shapes the TCR Repertoire but Fails to Control the Development of Low-Avidity Insulin-Reactive CD8+T Cells. Diabetes, 2016, 65, 1679-1689.	0.6	9
18	Activation-induced cytidine deaminase deficiency accelerates autoimmune diabetes in NOD mice. JCI Insight, 2018, 3, .	5.0	9

#	Article	IF	CITATIONS
19	Attenuated humoral responses in HLA-A*24-positive individuals at risk of type 1 diabetes. Diabetologia, 2015, 58, 2284-2287.	6.3	8
20	TLR9 Deficiency in B Cells Promotes Immune Tolerance via Interleukin-10 in a Type 1 Diabetes Mouse Model. Diabetes, 2021, 70, 504-515.	0.6	8
21	Innate immunity in latent autoimmune diabetes in adults. Diabetes/Metabolism Research and Reviews, 2022, 38, e3480.	4.0	7
22	Inflammasomes and Type 1 Diabetes. Frontiers in Immunology, 2021, 12, 686956.	4.8	7
23	A survey of HIV―and AIDS―elated knowledge, beliefs and attitudes among 14â€yearâ€olds in Nottinghamshire. Educational Research, 1996, 38, 93-99.	1.8	6
24	lgM-associated gut bacteria in obesity and type 2 diabetes in C57BL/6 mice and humans. Diabetologia, 2022, 65, 1398-1411.	6.3	4
25	Identification of Islet Antigen-Specific CD8 T Cells Using MHCI-Peptide Tetramer Reagents in the Non Obese Diabetic (NOD) Mouse Model of Type 1 Diabetes. Methods in Molecular Biology, 2015, 1433, 119-125.	0.9	3
26	100 years post-insulin: immunotherapy as the next frontier in type 1 diabetes. Immunotherapy Advances, $2021,1,$ ltab024.	3.0	2
27	Cyclophosphamide-modified murine peritoneal macrophages induce CD4+ T contrasuppressor cells that protect contact sensitivity T effector cells from suppression. Pharmacological Reports, 2018, 70, 796-803.	3.3	1
28	Insulin-Reactive T Cells Convert Diabetogenic Insulin-Reactive VH125 B Cells Into Tolerogenic Cells by Reducing Germinal Center T:B Cell Interactions in NOD Mice. Frontiers in Immunology, 2020, 11, 585886.	4.8	1
29	Differentiating MHC-Dependent and -Independent Mechanisms of Lymph Node Stromal Cell Regulation of Proinsulin-Specific CD8+ T Cells in Type 1 Diabetes. Diabetes, 2021, 70, 529-537.	0.6	O