
Paulo J M Bispo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3768307/publications.pdf Version: 2024-02-01

PALLO I M RISPO

#	Article	IF	CITATIONS
1	A Systematic Review of Multi-decade Antibiotic Resistance Data for Ocular Bacterial Pathogens in the United States. Ophthalmology and Therapy, 2022, 11, 503-520.	1.0	28
2	Population structure of ocular Streptococcus pneumoniae is highly diverse and formed by lineages that escape current vaccines. Microbial Genomics, 2022, 8, .	1.0	3
3	Targeted killing of ocular Streptococcus pneumoniae by the phage endolysin MSlys. Ophthalmology Science, 2022, , 100193.	1.0	0
4	Community-genotype methicillin-resistant Staphylococcus aureus skin and soft tissue infections in Latin America: a systematic review. Brazilian Journal of Infectious Diseases, 2021, 25, 101539.	0.3	10
5	Diphtheroids as Corneal Pathogens in Chronic Ocular Surface Disease in Stevens–Johnson Syndrome/Toxic Epidermal Necrolysis. Cornea, 2021, 40, 774-779.	0.9	5
6	A Cluster of Corneal Donor Rim Cultures Positive for Achromobacter Species Associated With Contaminated Eye Solution. Cornea, 2021, 40, 223-227.	0.9	0
7	Clinical metagenomics for infectious corneal ulcers: Rags to riches?. Ocular Surface, 2020, 18, 1-12.	2.2	32
8	Validation of a Comprehensive Clinical Algorithm for the Assessment and Treatment of Microbial Keratitis. American Journal of Ophthalmology, 2020, 214, 97-109.	1.7	23
9	The Best of All Worlds: Streptococcus pneumoniae Conjunctivitis through the Lens of Community Ecology and Microbial Biogeography. Microorganisms, 2020, 8, 46.	1.6	5
10	Coexistence of the Oxazolidinone Resistance–Associated Genes cfr and optrA in Enterococcus faecalis From a Healthy Piglet in Brazil. Frontiers in Public Health, 2020, 8, 518.	1.3	17
11	Application of Metagenomic Sequencing in the Diagnosis of Infectious Uveitis. Seminars in Ophthalmology, 2020, 35, 276-279.	0.8	9
12	The Search for Antifungal Prophylaxis After Artificial Corneal Surgery—An In Vitro Study. Cornea, 2020, 39, 1547-1555.	0.9	4
13	Hospital-Associated Multidrug-Resistant MRSA Lineages Are Trophic to the Ocular Surface and Cause Severe Microbial Keratitis. Frontiers in Public Health, 2020, 8, 204.	1.3	12
14	Transferable Resistance Gene <i>optrA</i> in Enterococcus faecalis from Swine in Brazil. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	19
15	The Challenge of Antibiotic Resistance in Corneal Infection. , 2020, , 277-288.		1
16	Caracterização e distribuição de estreptococos do grupo viridans isolados de endoftalmite infecciosa e ceratite. Arquivos Brasileiros De Oftalmologia, 2020, 83, 463-472.	0.2	1
17	Authors' response: Povidone-lodine for the Treatment of Microbial Keratitis. Survey of Ophthalmology, 2019, 64, 892-893.	1.7	0
18	Real-Time Multiplex PCR Analysis in Infectious Uveitis. Seminars in Ophthalmology, 2019, 34, 252-255.	0.8	13

Paulo J M Bispo

#	Article	IF	CITATIONS
19	The persistent dilemma of microbial keratitis: Global burden, diagnosis, and antimicrobial resistance. Survey of Ophthalmology, 2019, 64, 255-271.	1.7	287
20	Infectious corneal ulceration: a proposal for neglected tropical disease status. Bulletin of the World Health Organization, 2019, 97, 854-856.	1.5	52
21	Methicillin-resistant Staphylococcus aureus in acute otitis externa. World Journal of Otorhinolaryngology - Head and Neck Surgery, 2018, 4, 246-252.	0.7	4
22	Identification of the Infection Source of an Outbreak of Mycobacterium Chelonae Keratitis After Laser in Situ Keratomileusis. Cornea, 2018, 37, 116-122.	0.9	17
23	Staphylococcus aureus from ocular and otolaryngology infections are frequently resistant to clinically important antibiotics and are associated with lineages of community and hospital origins. PLoS ONE, 2018, 13, e0208518.	1.1	21
24	Resolution of fluoroquinolone-resistant Escherichia coli keratitis with a PROSE device for enhanced targeted antibiotic delivery. American Journal of Ophthalmology Case Reports, 2018, 12, 73-75.	0.4	7
25	Rapid Detection and Identification of Uveitis Pathogens by Qualitative Multiplex Real-Time PCR. , 2018, 59, 582.		20
26	Neither non-toxigenicStaphylococcus aureusnor commensalS.epidermidiactivates NLRP3 inflammasomes in human conjunctival goblet cells. BMJ Open Ophthalmology, 2017, 2, e000101.	0.8	8
27	Detection of herpes simplex-1 and -2 and varicella zoster virus by quantitative real-time polymerase chain reaction in corneas from patients with bacterial keratitis. Arquivos Brasileiros De Oftalmologia, 2017, 80, 84-87.	0.2	2
28	Analysis of Intraocular Lens Biofilms and Fluids After Long-Term Uncomplicated Cataract Surgery. American Journal of Ophthalmology, 2016, 169, 46-57.	1.7	7
29	Antibiotic Resistance in Endophthalmitis Pathogens. , 2016, , 239-260.		2
30	Biofilms in Infections of the Eye. Pathogens, 2015, 4, 111-136.	1.2	120
31	DNA Extraction Methods for Panbacterial and Panfungal PCR Detection in Intraocular Fluids. Current Eye Research, 2015, 40, 697-706.	0.7	17
32	Correction for Matsumoto et al., Demonstration of Plasmid-Mediated Drug Resistance in Mycobacterium abscessus. Journal of Clinical Microbiology, 2015, 53, 367-367.	1.8	0
33	Unencapsulated Streptococcus pneumoniae from conjunctivitis encode variant traits and belong to a distinct phylogenetic cluster. Nature Communications, 2014, 5, 5411.	5.8	45
34	Demonstration of Plasmid-Mediated Drug Resistance in Mycobacterium abscessus. Journal of Clinical Microbiology, 2014, 52, 1727-1729.	1.8	6
35	Characterization of Ocular Methicillin-Resistant Staphylococcus epidermidis Isolates Belonging Predominantly to Clonal Complex 2 Subcluster II. Journal of Clinical Microbiology, 2014, 52, 1412-1417.	1.8	24
36	Emerging 8-Methoxyfluoroquinolone Resistance among Methicillin-Susceptible Staphylococcus epidermidis Isolates Recovered from Patients with Endophthalmitis. Journal of Clinical Microbiology, 2013, 51, 2959-2963.	1.8	23

Paulo J M Bispo

#	Article	IF	CITATIONS
37	Fusarium keratitis in Brazil: genotyping, in vitro susceptibilities, and clinical outcomes. Clinical Ophthalmology, 2013, 7, 1693.	0.9	30
38	Prevalence and antibiotic susceptibility of methicillin-resistant Staphylococcus aureus in ocular infections. Arquivos Brasileiros De Oftalmologia, 2013, 76, 350-353.	0.2	39
39	Cation Concentration Variability of Four Distinct Mueller-Hinton Agar Brands Influences Polymyxin B Susceptibility Results. Journal of Clinical Microbiology, 2012, 50, 2414-2418.	1.8	52
40	Bactericidal effect of S-nitrosothiols against clinical isolates from keratitis. Clinical Ophthalmology, 2012, 6, 1907.	0.9	12
41	Safety and Efficacy of Moxifloxacin-Dexamethasone Eyedrops as Treatment for Bacterial Ocular Infection Associated with Bacterial Blepharitis. Advances in Therapy, 2012, 29, 416-426.	1.3	16
42	Real-time polymerase chain reaction test to discriminate between contamination and intraocular infection after cataract surgery. Journal of Cataract and Refractive Surgery, 2011, 37, 1244-1250.	0.7	18
43	Microbial profile and antibiotic susceptibility of culture-positive bacterial endophthalmitis. Eye, 2011, 25, 382-388.	1.1	60
44	Pseudomonas aeruginosa Endophthalmitis after Penetrating Keratoplasty Transmitted from the Same Donor to Two Recipients Confirmed by Pulsed-Field Gel Electrophoresis : Fig. 1. Journal of Clinical Microbiology, 2011, 49, 3346-3347.	1.8	7
45	Detection and Gram Discrimination of Bacterial Pathogens from Aqueous and Vitreous Humor Using Real-Time PCR Assays. Investigative Ophthalmology and Visual Science, 2011, 52, 873-881.	3.3	68
46	Incidence of endophthalmitis after cataract surgery (2002-2008) at a Brazilian university-hospital. Arquivos Brasileiros De Oftalmologia, 2010, 73, 505-507.	0.2	18
47	Molecular biology applied to the laboratory diagnosis of bacterial endophthalmitis. Arquivos Brasileiros De Oftalmologia, 2009, 72, 734-740.	0.2	11
48	ADVANCES IN THE MICROBIOLOGICAL DIAGNOSIS OF SEPSIS. Shock, 2008, 30, 41-46.	1.0	36