Henry Houlden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3768129/publications.pdf Version: 2024-02-01

		2802	3323
653	44,887	94	184
papers	citations	h-index	g-index
723	723	723	39744
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature, 1998, 393, 702-705.	27.8	3,333
2	Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nature Genetics, 2009, 41, 1308-1312.	21.4	1,745
3	Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nature Genetics, 2014, 46, 989-993.	21.4	1,685
4	Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2019, 18, 1091-1102.	10.2	1,414
5	A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N–terminus of β–amyloid. Nature Genetics, 1992, 1, 345-347.	21.4	1,384
6	Early-onset Alzheimer's disease caused by mutations at codon 717 of the β-amyloid precursor protein gene. Nature, 1991, 353, 844-846.	27.8	1,202
7	Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurology, The, 2012, 11, 323-330.	10.2	1,039
8	Association of an Extended Haplotype in the Tau Gene with Progressive Supranuclear Palsy. Human Molecular Genetics, 1999, 8, 711-715.	2.9	749
9	Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease. Brain, 2009, 132, 1783-1794.	7.6	612
10	A common polymorphism in the brainâ€derived neurotrophic factor gene (<i>BDNF</i>) modulates human cortical plasticity and the response to rTMS. Journal of Physiology, 2008, 586, 5717-5725.	2.9	592
11	The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. Nature Genetics, 1995, 11, 219-222.	21.4	461
12	Parkinson's disease induced pluripotent stem cells with triplication of the α-synuclein locus. Nature Communications, 2011, 2, 440.	12.8	406
13	Characterization of PLA2G6 as a locus for dystoniaâ€parkinsonism. Annals of Neurology, 2009, 65, 19-23.	5.3	399
14	A novel α-synuclein missense mutation in Parkinson disease. Neurology, 2013, 80, 1062-1064.	1.1	396
15	Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype. Neurology, 2001, 56, 1702-1706.	1.1	392
16	α-Synucleinopathy associated with G51D SNCA mutation: a link between Parkinson's disease and multiple system atrophy?. Acta Neuropathologica, 2013, 125, 753-769.	7.7	369
17	A variant of Alzheimer's disease with spastic paraparesis and unusual plaques due to deletion of exon 9 of presenilin 1. Nature Medicine, 1998, 4, 452-455.	30.7	347
18	Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia. Nature Genetics, 2019, 51, 649-658.	21.4	338

#	Article	IF	CITATIONS
19	Whole-genome sequencing of patients with rare diseases in a national health system. Nature, 2020, 583, 96-102.	27.8	338
20	Hereditary Sensory Neuropathy Type 1 Is Caused by the Accumulation of Two Neurotoxic Sphingolipids. Journal of Biological Chemistry, 2010, 285, 11178-11187.	3.4	320
21	Clinical implications of genetic advances in Charcot–Marie–Tooth disease. Nature Reviews Neurology, 2013, 9, 562-571.	10.1	299
22	Charcot–Marie–Tooth disease: frequency of genetic subtypes and guidelines for genetic testing. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 706-710.	1.9	297
23	Large C9orf72 Hexanucleotide Repeat Expansions Are Seen in Multiple Neurodegenerative Syndromes and Are More Frequent Than Expected in the UK Population. American Journal of Human Genetics, 2013, 92, 345-353.	6.2	297
24	Early onset familial Alzheimer's disease. Neurology, 2003, 60, 235-239.	1.1	292
25	The Parkinson's disease–linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nature Neuroscience, 2013, 16, 1257-1265.	14.8	292
26	Earlyâ€onset Lâ€dopaâ€responsive parkinsonism with pyramidal signs due to <i>ATP13A2, PLA2G6, FBXO7</i> and <i>spatacsin</i> mutations. Movement Disorders, 2010, 25, 1791-1800.	3.9	287
27	The genetics and neuropathology of Parkinson's disease. Acta Neuropathologica, 2012, 124, 325-338.	7.7	281
28	Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nature Genetics, 2010, 42, 170-174.	21.4	278
29	Deletion at ITPR1 Underlies Ataxia in Mice and Spinocerebellar Ataxia 15 in Humans. PLoS Genetics, 2007, 3, e108.	3.5	269
30	A locus for familial early–onset Alzhelmer's disease on the long arm of chromosome 14, proximal to the α1–antichymotrypsin gene. Nature Genetics, 1992, 2, 340-342.	21.4	266
31	5′ Splice Site Mutations in tau Associated with the Inherited Dementia FTDP-17 Affect a Stem-Loop Structure That Regulates Alternative Splicing of Exon 10. Journal of Biological Chemistry, 1999, 274, 15134-15143.	3.4	266
32	A mutation in Alzheimer's disease destroying a splice acceptor site in the presenilin-1 gene. NeuroReport, 1995, 7, 297-301.	1.2	262
33	<i>SNCA</i> variants are associated with increased risk for multiple system atrophy. Annals of Neurology, 2009, 65, 610-614.	5.3	257
34	<i>C9orf72</i> expansions are the most common genetic cause of Huntington disease phenocopies. Neurology, 2014, 82, 292-299.	1.1	252
35	Mutations in the Gene PRRT2 Cause Paroxysmal Kinesigenic Dyskinesia with Infantile Convulsions. Cell Reports, 2012, 1, 2-12.	6.4	250
36	Neuroimaging Features of Neurodegeneration with Brain Iron Accumulation. American Journal of Neuroradiology, 2012, 33, 407-414.	2.4	249

#	Article	IF	CITATIONS
37	Mutations in SLC39A14 disrupt manganese homeostasis and cause childhood-onset parkinsonism–dystonia. Nature Communications, 2016, 7, 11601.	12.8	233
38	The neuropathology, pathophysiology and genetics of multiple system atrophy. Neuropathology and Applied Neurobiology, 2012, 38, 4-24.	3.2	218
39	Defective <i>FA2H</i> leads to a novel form of neurodegeneration with brain iron accumulation (NBIA). Annals of Neurology, 2010, 68, 611-618.	5.3	202
40	Cerebral microbleeds and intracranial haemorrhage risk in patients anticoagulated for atrial fibrillation after acute ischaemic stroke or transient ischaemic attack (CROMIS-2): a multicentre observational cohort study. Lancet Neurology, The, 2018, 17, 539-547.	10.2	192
41	Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia. Nature Genetics, 2017, 49, 223-237.	21.4	186
42	Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11. Nature Genetics, 2007, 39, 1434-1436.	21.4	185
43	Widespread Lewy body and tau accumulation in childhood and adult onset dystonia-parkinsonism cases with PLA2G6 mutations. Neurobiology of Aging, 2012, 33, 814-823.	3.1	184
44	DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases. Annals of Neurology, 2016, 79, 983-990.	5.3	183
45	Spinocerebellar ataxia: an update. Journal of Neurology, 2019, 266, 533-544.	3.6	180
46	Gâ€quadruplexâ€binding small molecules ameliorate <i>C9orf72</i> <scp>FTD</scp> / <scp>ALS</scp> pathology <i>inÂvitro</i> and <i>inÂvivo</i> . EMBO Molecular Medicine, 2018, 10, 22-31.	6.9	178
47	Germline selection shapes human mitochondrial DNA diversity. Science, 2019, 364, .	12.6	178
48	Exome Sequence Reveals Mutations in CoA Synthase as a Cause of Neurodegeneration with Brain Iron Accumulation. American Journal of Human Genetics, 2014, 94, 11-22.	6.2	176
49	Mutation of FA2H underlies a complicated form of hereditary spastic paraplegia (SPG35). Human Mutation, 2010, 31, E1251-E1260.	2.5	174
50	KIF1A, an Axonal Transporter of Synaptic Vesicles, Is Mutated in Hereditary Sensory and Autonomic Neuropathy Type 2. American Journal of Human Genetics, 2011, 89, 219-230.	6.2	172
51	Hereditary spastic paraplegia: from diagnosis to emerging therapeutic approaches. Lancet Neurology, The, 2019, 18, 1136-1146.	10.2	171
52	Genetic and phenotypic characterization of complex hereditary spastic paraplegia. Brain, 2016, 139, 1904-1918.	7.6	170
53	Parkinson's disease in GTP cyclohydrolase 1 mutation carriers. Brain, 2014, 137, 2480-2492.	7.6	169
54	Mutations in the <i>HSP27</i> (<i>HSPB1</i>) gene cause dominant, recessive, and sporadic distal HMN/CMT type 2. Neurology, 2008, 71, 1660-1668.	1.1	168

#	Article	IF	CITATIONS
55	<i>ATP13A2</i> mutations (PARK9) cause neurodegeneration with brain iron accumulation. Movement Disorders, 2010, 25, 979-984.	3.9	163
56	Genome-wide association study of intracranial aneurysms identifies 17 risk loci and genetic overlap with clinical risk factors. Nature Genetics, 2020, 52, 1303-1313.	21.4	163
57	Brown-Vialetto-Van Laere Syndrome, a Ponto-Bulbar Palsy with Deafness, Is Caused by Mutations in C20orf54. American Journal of Human Genetics, 2010, 86, 485-489.	6.2	161
58	The phenotypic spectrum of DYT24 due to ANO3 mutations. Movement Disorders, 2014, 29, 928-934.	3.9	161
59	<i>PRRT2</i> gene mutations. Neurology, 2012, 79, 2115-2121.	1.1	159
60	Mutations in BICD2 Cause Dominant Congenital Spinal Muscular Atrophy and Hereditary Spastic Paraplegia. American Journal of Human Genetics, 2013, 92, 965-973.	6.2	156
61	Complete analysis of the presenilin 1 gene in early onset Alzheimer's disease. NeuroReport, 1996, 7, 801-805.	1.2	150
62	Frequency oftau mutations in three series of non-Alzheimer's degenerative dementia. Annals of Neurology, 1999, 46, 243-248.	5.3	150
63	AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders. Nature Communications, 2019, 10, 3094.	12.8	150
64	Alphaâ€synuclein mRNA expression in oligodendrocytes in MSA. Glia, 2014, 62, 964-970.	4.9	149
65	Mutations in the autoregulatory domain of βâ€ŧubulin 4a cause hereditary dystonia. Annals of Neurology, 2013, 73, 546-553.	5.3	148
66	Genetic Analysis of Inherited Leukodystrophies. JAMA Neurology, 2013, 70, 875.	9.0	147
67	Glucocerebrosidase mutations confer a greater risk of dementia during Parkinson's disease course. Movement Disorders, 2012, 27, 393-399.	3.9	144
68	Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2. Brain, 2014, 137, 44-56.	7.6	143
69	Cerebral microbleeds and stroke risk after ischaemic stroke or transient ischaemic attack: a pooled analysis of individual patient data from cohort studies. Lancet Neurology, The, 2019, 18, 653-665.	10.2	143
70	<i>ADCY5</i> mutations are another cause of benign hereditary chorea. Neurology, 2015, 85, 80-88.	1.1	140
71	Cerebellar ataxia, neuropathy, vestibular areflexia syndrome due to RFC1 repeat expansion. Brain, 2020, 143, 480-490.	7.6	140
72	A genome-wide association study in multiple system atrophy. Neurology, 2016, 87, 1591-1598.	1.1	139

5

#	Article	IF	CITATIONS
73	Clinical and genetic characterization of families with triple A (Allgrove) syndrome. Brain, 2002, 125, 2681-2690.	7.6	137
74	<i>THAP1</i> mutations (DYT6) are an additional cause of early-onset dystonia. Neurology, 2010, 74, 846-850.	1.1	136
75	Genetic risk factors for intracranial aneurysms. Neurology, 2013, 80, 2154-2165.	1.1	136
76	Variant Alzheimer's disease with spastic paraparesis and cotton wool plaques is caused by PS-1 mutations that lead to exceptionally high amyloid-? concentrations. Annals of Neurology, 2000, 48, 806-808.	5.3	135
77	APOE genotype does not modulate age of onset in families with chromosome 14 encoded Alzheimer's disease. Neuroscience Letters, 1994, 169, 179-180.	2.1	130
78	The clinical and genetic heterogeneity of paroxysmal dyskinesias. Brain, 2015, 138, 3567-3580.	7.6	129
79	Regional Distribution of Amyloid-Bri Deposition and Its Association with Neurofibrillary Degeneration in Familial British Dementia. American Journal of Pathology, 2001, 158, 515-526.	3.8	127
80	Pathogenic VCP Mutations Induce Mitochondrial Uncoupling and Reduced ATP Levels. Neuron, 2013, 78, 57-64.	8.1	127
81	THAP1 mutations and dystonia phenotypes: Genotype phenotype correlations. Movement Disorders, 2012, 27, 1290-1294.	3.9	126
82	Functional Studies of Missense TREM2 Mutations in Human Stem Cell-Derived Microglia. Stem Cell Reports, 2018, 10, 1294-1307.	4.8	124
83	Clinical, pathological and genetic characterization of hereditary sensory and autonomic neuropathy type 1 (HSAN I). Brain, 2006, 129, 411-425.	7.6	122
84	Expanding the genetic heterogeneity of intellectual disability. Human Genetics, 2017, 136, 1419-1429.	3.8	122
85	The glucocerobrosidase E326K variant predisposes to Parkinson's disease, but does not cause Gaucher's disease. Movement Disorders, 2013, 28, 232-236.	3.9	121
86	Mutations in GBA2 Cause Autosomal-Recessive Cerebellar Ataxia with Spasticity. American Journal of Human Genetics, 2013, 92, 245-251.	6.2	120
87	Hâ€ABC syndrome and DYT4: Variable expressivity or pleiotropy of TUBB4 mutations?. Movement Disorders, 2015, 30, 828-833.	3.9	117
88	Developmental regulation of tau splicing is disrupted in stem cell-derived neurons from frontotemporal dementia patients with the 10 + 16 splice-site mutation in MAPT. Human Molecular Genetics, 2015, 24, 5260-5269.	2.9	116
89	Exome sequencing reveals riboflavin transporter mutations as a cause of motor neuron disease. Brain, 2012, 135, 2875-2882.	7.6	114
90	Cerebral small vessel disease-related protease HtrA1 processes latent TGF-β binding protein 1 and facilitates TGF-β signaling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16496-16501.	7.1	114

#	Article	IF	CITATIONS
91	Review: Insights into molecular mechanisms of disease in neurodegeneration with brain iron accumulation: unifying theories. Neuropathology and Applied Neurobiology, 2016, 42, 220-241.	3.2	114
92	Dominant mutations in the cation channel gene transient receptor potential vanilloid 4 cause an unusual spectrum of neuropathies. Brain, 2010, 133, 1798-1809.	7.6	113
93	A novel RAB7 mutation associated with ulceroâ€mutilating neuropathy. Annals of Neurology, 2004, 56, 586-590.	5.3	112
94	Exome sequencing identifies a significant variant in methionyl-tRNA synthetase (<i>MARS</i>) in a family with late-onset CMT2. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 1247-1249.	1.9	112
95	A novel TRK A (NTRK1) mutation associated with hereditary sensory and autonomic neuropathy type V. Annals of Neurology, 2001, 49, 521-525.	5.3	110
96	Large, expanded repeats in SCA8 are not confined to patients with cerebellar ataxia. Nature Genetics, 2000, 24, 214-215.	21.4	109
97	NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiology of Aging, 2017, 57, 247.e9-247.e13.	3.1	108
98	NDUFA4 Mutations Underlie Dysfunction of a Cytochrome c Oxidase Subunit Linked to Human Neurological Disease. Cell Reports, 2013, 3, 1795-1805.	6.4	104
99	Age-related penetrance of the C9orf72 repeat expansion. Scientific Reports, 2017, 7, 2116.	3.3	102
100	Rhabdomyolysis: a genetic perspective. Orphanet Journal of Rare Diseases, 2015, 10, 51.	2.7	101
101	Familial <i>PRRT2</i> mutation with heterogeneous paroxysmal disorders including paroxysmal torticollis and hemiplegic migraine. Developmental Medicine and Child Neurology, 2012, 54, 958-960.	2.1	100
102	Genetic dysfunction of <i>MT-ATP6</i> causes axonal Charcot-Marie-Tooth disease. Neurology, 2012, 79, 1145-1154.	1.1	97
103	De Novo Mutations in PDE10A Cause Childhood-Onset Chorea with Bilateral Striatal Lesions. American Journal of Human Genetics, 2016, 98, 763-771.	6.2	96
104	Chromosome 14-encoded Alzheimer's disease: Genetic and clinicopathological description. Annals of Neurology, 1994, 36, 362-367.	5.3	95
105	Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets. JAMA Neurology, 2021, 78, 464.	9.0	95
106	Defects of mutant DNMT1 are linked to a spectrum of neurological disorders. Brain, 2015, 138, 845-861.	7.6	94
107	Natural History, Phenotypic Spectrum, and Discriminative Features of Multisystemic RFC1 Disease. Neurology, 2021, 96, e1369-e1382.	1.1	93
108	Extended phenotypic spectrum of <i>KIF5A</i> mutations. Neurology, 2014, 83, 612-619.	1.1	92

#	Article	IF	CITATIONS
109	Forebrain deletion of the dystonia protein torsinA causes dystonic-like movements and loss of striatal cholinergic neurons. ELife, 2015, 4, e08352.	6.0	92
110	Neuropathy target esterase impairments cause Oliver–McFarlane and Laurence–Moon syndromes. Journal of Medical Genetics, 2015, 52, 85-94.	3.2	91
111	Distinct clinical and neuropathological features of G51D SNCA mutation cases compared with SNCA duplication and H50Q mutation. Molecular Neurodegeneration, 2015, 10, 41.	10.8	90
112	Mutations in SNX14 Cause a Distinctive Autosomal-Recessive Cerebellar Ataxia and Intellectual Disability Syndrome. American Journal of Human Genetics, 2014, 95, 611-621.	6.2	89
113	Mutations in the 5' region of the myotubularin-related protein 2 (MTMR2) gene in autosomal recessive hereditary neuropathy with focally folded myelin. Brain, 2001, 124, 907-915.	7.6	88
114	Mutations in the Neuronal Vesicular SNARE VAMP2 Affect Synaptic Membrane Fusion and Impair Human Neurodevelopment. American Journal of Human Genetics, 2019, 104, 721-730.	6.2	88
115	Practical approach to the diagnosis of adult-onset leukodystrophies: an updated guide in the genomic era. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 543-555.	1.9	87
116	The inherited ataxias: Genetic heterogeneity, mutation databases, and future directions in research and clinical diagnostics. Human Mutation, 2012, 33, 1324-1332.	2.5	86
117	Genetic variability at the PARK16 locus. European Journal of Human Genetics, 2010, 18, 1356-1359.	2.8	85
118	Excess α-synuclein compromises phagocytosis in iPSC-derived macrophages. Scientific Reports, 2017, 7, 9003.	3.3	85
119	Localization of frontotemporal dementia with parkinsonism in an Australian kindred to chromosome 17q21-22. Annals of Neurology, 1997, 42, 794-798.	5.3	83
120	A novel NGF mutation clarifies the molecular mechanism and extends the phenotypic spectrum of the HSAN5 neuropathy. Journal of Medical Genetics, 2011, 48, 131-135.	3.2	83
121	Riboflavin Responsive Mitochondrial Dysfunction in Neurodegenerative Diseases. Journal of Clinical Medicine, 2017, 6, 52.	2.4	83
122	Severe infantile neuropathy with diaphragmatic weakness and its relationship to SMARD1. Brain, 2003, 126, 2682-2692.	7.6	82
123	Frequency of mutations in the genes associated with hereditary sensory and autonomic neuropathy in a UK cohort. Journal of Neurology, 2012, 259, 1673-1685.	3.6	82
124	Phenotypic and molecular insights into spinal muscular atrophy due to mutations in BICD2. Brain, 2015, 138, 293-310.	7.6	82
125	Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans. Cell Reports, 2016, 16, 79-91.	6.4	82
126	Microdeletion in a FAAH pseudogene identified in a patient with high anandamide concentrations and pain insensitivity. British Journal of Anaesthesia, 2019, 123, e249-e253.	3.4	82

#	Article	IF	CITATIONS
127	Human ataxias: a genetic dissection of inositol triphosphate receptor (ITPR1)-dependent signaling. Trends in Neurosciences, 2010, 33, 211-219.	8.6	81
128	A practical approach to diagnosing adult onset leukodystrophies. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 770-781.	1.9	80
129	The phenotype of Charcot–Marie–Tooth disease type 4C due to SH3TC2 mutations and possible predisposition to an inflammatory neuropathy. Neuromuscular Disorders, 2009, 19, 264-269.	0.6	78
130	A Pathogenic Presenilin-1 Deletion Causes Abberrant Aβ42 Production in the Absence of Congophilic Amyloid Plaques. Journal of Biological Chemistry, 2001, 276, 7233-7239.	3.4	76
131	Use of the Barthel Index and the Functional Independence Measure during early inpatient rehabilitation after single incident brain injury. Clinical Rehabilitation, 2006, 20, 153-159.	2.2	75
132	Truncating and Missense Mutations in IGHMBP2 Cause Charcot-Marie Tooth Disease Type 2. American Journal of Human Genetics, 2014, 95, 590-601.	6.2	75
133	DNA repair in the trinucleotide repeat disorders. Lancet Neurology, The, 2017, 16, 88-96.	10.2	75
134	Towards a complete resolution of the genetic architecture of disease. Trends in Genetics, 2010, 26, 438-442.	6.7	74
135	Recent Advances in the Genetics of Cerebellar Ataxias. Current Neurology and Neuroscience Reports, 2012, 12, 227-236.	4.2	74
136	Whole genome sequencing for the diagnosis of neurological repeat expansion disorders in the UK: a retrospective diagnostic accuracy and prospective clinical validation study. Lancet Neurology, The, 2022, 21, 234-245.	10.2	74
137	Systemic Amyloid Deposits in Familial British Dementia. Journal of Biological Chemistry, 2001, 276, 43909-43914.	3.4	73
138	Clinical and genetic characterization of leukoencephalopathies in adults. Brain, 2017, 140, 1204-1211.	7.6	73
139	Recessive axonal Charcot-Marie-Tooth disease due to compound heterozygous mitofusin 2 mutations. Neurology, 2011, 77, 168-173.	1.1	72
140	Analysis of Mutations in <i>AARS2</i> in a Series of <i>CSF1R</i> -Negative Patients With Adult-Onset Leukoencephalopathy With Axonal Spheroids and Pigmented Glia. JAMA Neurology, 2016, 73, 1433.	9.0	71
141	Targeted next-generation sequencing panels in the diagnosis of Charcot-Marie-Tooth disease. Neurology, 2020, 94, e51-e61.	1.1	71
142	Lossâ€ofâ€Function Variants in <scp>HOPS</scp> Complex Genes <scp><i>VPS16</i></scp> and <scp><i>VPS41</i></scp> Cause Early Onset Dystonia Associated with Lysosomal Abnormalities. Annals of Neurology, 2020, 88, 867-877.	5.3	70
143	<i>SPG11</i> mutations are common in familial cases of complicated hereditary spastic paraplegia. Neurology, 2008, 70, 1384-1389.	1.1	69
144	Genetics of neurodegenerative diseases: an overview. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 145, 309-323.	1.8	69

#	Article	IF	CITATIONS
145	Localization of the Gene for Distal Hereditary Motor Neuronopathy VII (dHMN-VII) to Chromosome 2q14. American Journal of Human Genetics, 2001, 68, 1270-1276.	6.2	68
146	Comprehensive genetic diagnosis of tandem repeat expansion disorders with programmable targeted nanopore sequencing. Science Advances, 2022, 8, eabm5386.	10.3	68
147	PRRT2 Regulates Synaptic Fusion by Directly Modulating SNARE Complex Assembly. Cell Reports, 2018, 22, 820-831.	6.4	67
148	The endocytic membrane trafficking pathway plays a major role in the risk of Parkinson's disease. Movement Disorders, 2019, 34, 460-468.	3.9	66
149	An update on the genetics, clinical presentation, and pathomechanisms of human riboflavin transporter deficiency. Journal of Inherited Metabolic Disease, 2019, 42, 598-607.	3.6	65
150	Redefining the phenotype of ALSP and <i>AARS2</i> mutation–related leukodystrophy. Neurology: Genetics, 2017, 3, e135.	1.9	64
151	Clinical, pathological and functional characterization of riboflavin-responsive neuropathy. Brain, 2017, 140, 2820-2837.	7.6	64
152	Somatic copy number gains of α-synuclein (SNCA) in Parkinson's disease and multiple system atrophy brains. Brain, 2018, 141, 2419-2431.	7.6	63
153	<i>RFC1</i> expansions are a common cause of idiopathic sensory neuropathy. Brain, 2021, 144, 1542-1550.	7.6	63
154	Dominant Mutations in GRM1 Cause Spinocerebellar Ataxia Type 44. American Journal of Human Genetics, 2017, 101, 451-458.	6.2	62
155	PRUNE is crucial for normal brain development and mutated in microcephaly with neurodevelopmental impairment. Brain, 2017, 140, 940-952.	7.6	62
156	Hereditary sensory neuropathies. Current Opinion in Neurology, 2004, 17, 569-577.	3.6	61
157	GLUCOCEREBROSIDASE MUTATIONS IN 108 NEUROPATHOLOGICALLY CONFIRMED CASES OF MULTIPLE SYSTEM ATROPHY. Neurology, 2009, 72, 1185-1186.	1.1	60
158	The MAPT p.A152T variant is a risk factor associated with tauopathies with atypical clinical and neuropathological features. Neurobiology of Aging, 2012, 33, 2231.e7-2231.e14.	3.1	60
159	A 6.4 Mb Duplication of the α-Synuclein Locus Causing Frontotemporal Dementia and Parkinsonism. JAMA Neurology, 2014, 71, 1162.	9.0	60
160	Insights From Cerebellar Transcriptomic Analysis Into the Pathogenesis of Ataxia. JAMA Neurology, 2014, 71, 831.	9.0	60
161	A novel tau mutation in exon 9 (1260V) causes a four-repeat tauopathy. Experimental Neurology, 2003, 184, 131-140.	4.1	59
162	Compound heterozygous <i> PANK2 </i> mutations confirm HARP and Hallervorden-Spatz syndromes are allelic. Neurology, 2003, 61, 1423-1426.	1.1	59

#	Article	IF	CITATIONS
163	Validation of next-generation sequencing technologies in genetic diagnosis of dementia. Neurobiology of Aging, 2014, 35, 261-265.	3.1	59
164	Mutations in ACTL6B Cause Neurodevelopmental Deficits and Epilepsy and Lead to Loss of Dendrites in Human Neurons. American Journal of Human Genetics, 2019, 104, 815-834.	6.2	59
165	Hereditary leukoencephalopathy with axonal spheroids: a spectrum of phenotypes from CNS vasculitis to parkinsonism in an adult onset leukodystrophy series. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 512-519.	1.9	58
166	ApoE genotype is a risk factor in nonpresenilin early-onset alzheimer's disease families. American Journal of Medical Genetics Part A, 1998, 81, 117-121.	2.4	57
167	Six novel connexin32 (GJB1) mutations in X-linked Charcot-Marie-Tooth disease. Journal of Neurology, Neurosurgery and Psychiatry, 2002, 73, 304-306.	1.9	56
168	Novel Mutations Mapping to the Fourth Sodium Channel Domain of Nav1.7 Result in Variable Clinical Manifestations of Primary Erythromelalgia. NeuroMolecular Medicine, 2013, 15, 265-278.	3.4	56
169	The genetics of intellectual disability: advancing technology and gene editing. F1000Research, 2020, 9, 22.	1.6	56
170	Dopaminergic Neuronal Imaging in Genetic Parkinson's Disease: Insights into Pathogenesis. PLoS ONE, 2013, 8, e69190.	2.5	55
171	A novel presenilin mutation (M233V) causing very early onset Alzheimer's disease with Lewy bodies. Neuroscience Letters, 2001, 313, 93-95.	2.1	54
172	Exome Sequencing in Brown-Vialetto-Van Laere Syndrome. American Journal of Human Genetics, 2010, 87, 567-569.	6.2	54
173	<i>PDXK</i> mutations cause polyneuropathy responsive to pyridoxal 5′â€phosphate supplementation. Annals of Neurology, 2019, 86, 225-240.	5.3	54
174	Early onset cerebral amyloid angiopathy following childhood exposure to cadaveric dura. Annals of Neurology, 2019, 85, 284-290.	5.3	54
175	Polymorphism in AACT gene may lower age of onset of Alzheimer's disease. NeuroReport, 1996, 7, 534-536.	1.2	53
176	Somatic alphaâ€synuclein mutations in Parkinson's disease: Hypothesis and preliminary data. Movement Disorders, 2013, 28, 705-712.	3.9	53
177	Cryptic Amyloidogenic Elements in the 3′ UTRs of Neurofilament Genes Trigger Axonal Neuropathy. American Journal of Human Genetics, 2016, 98, 597-614.	6.2	53
178	A novel RFC1 repeat motif (ACAGG) in two Asia-Pacific CANVAS families. Brain, 2020, 143, 2904-2910.	7.6	53
179	Presenilin 1 Mutation in an African American Family Presenting With Atypical Alzheimer Dementia. Archives of Neurology, 2003, 60, 884.	4.5	52
180	A homozygous ATAD1 mutation impairs postsynaptic AMPA receptor trafficking and causes a lethal encephalopathy. Brain, 2018, 141, 651-661.	7.6	52

#	Article	IF	CITATIONS
181	A homozygous <i>lossâ€ofâ€function</i> mutation in <i>PDE2A</i> associated to earlyâ€onset hereditary chorea. Movement Disorders, 2018, 33, 482-488.	3.9	52
182	Hereditary sensory neuropathy is caused by a mutation in the delta subunit of the cytosolic chaperonin-containing t-complex peptide-1 (Cct4) gene. Human Molecular Genetics, 2003, 12, 1917-1925.	2.9	51
183	Connexin 32 promoter P2 mutations: A mechanism of peripheral nerve dysfunction. Annals of Neurology, 2004, 56, 730-734.	5.3	51
184	Molecular genetics of autosomal-dominant demyelinating Charcot-Marie-Tooth disease. NeuroMolecular Medicine, 2006, 8, 43-62.	3.4	51
185	c-Jun expression in human neuropathies: a pilot study. Journal of the Peripheral Nervous System, 2011, 16, 295-303.	3.1	51
186	The Clinical Relevance of Microbleeds in Stroke study (CROMIS-2): rationale, design, and methods. International Journal of Stroke, 2015, 10, 155-161.	5.9	51
187	Alzheimer disease PS-1 exon 9 deletion defined. Nature Medicine, 1999, 5, 1090-1090.	30.7	50
188	Analysis of <i>tau</i> haplotypes in Pick's disease. Neurology, 2002, 59, 443-445.	1.1	50
189	An <i>ITPR1</i> gene deletion causes spinocerebellar ataxia 15/16: A genetic, clinical and radiological description. Movement Disorders, 2010, 25, 2176-2182.	3.9	49
190	Variable phenotypes are associated with PMP22 missense mutations. Neuromuscular Disorders, 2011, 21, 106-114.	0.6	48
191	Mutation in FAM134B causing severe hereditary sensory neuropathy: Figure 1. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 119-120.	1.9	48
192	Autosomal-recessive cerebellar ataxia caused by a novel ADCK3 mutation that elongates the protein: clinical, genetic and biochemical characterisation. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 493-498.	1.9	48
193	Screening a UK amyotrophic lateral sclerosis cohort provides evidence of multiple origins of the C9orf72 expansion. Neurobiology of Aging, 2015, 36, 546.e1-546.e7.	3.1	48
194	Pathological ribonuclease H1 causes R-loop depletion and aberrant DNA segregation in mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4276-85.	7.1	48
195	Homozygous mutations in <scp><i>VAMP</i></scp> <i>1</i> cause a presynaptic congenital myasthenic syndrome. Annals of Neurology, 2017, 81, 597-603.	5.3	48
196	Coenzyme Q10 Levels Are Decreased in the Cerebellum of Multiple-System Atrophy Patients. PLoS ONE, 2016, 11, e0149557.	2.5	48
197	Age of onset in familial early onset Alzheimer's disease correlates with genetic aetiology. American Journal of Medical Genetics Part A, 1993, 48, 129-130.	2.4	47
198	The Genetic Architecture of Parkinson Disease in Spain: Characterizing Populationâ€5pecific Risk, Differential Haplotype Structures, and Providing Etiologic Insight. Movement Disorders, 2019, 34, 1851-1863.	3.9	47

#	Article	IF	CITATIONS
199	An update on advances in magnetic resonance imaging of multiple system atrophy. Journal of Neurology, 2019, 266, 1036-1045.	3.6	47
200	Early versus late anticoagulation for ischaemic stroke associated with atrial fibrillation: multicentre cohort study. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 320-325.	1.9	47
201	NEMF mutations that impair ribosome-associated quality control are associated with neuromuscular disease. Nature Communications, 2020, 11, 4625.	12.8	47
202	Bi-allelic JAM2 Variants Lead to Early-Onset Recessive Primary Familial Brain Calcification. American Journal of Human Genetics, 2020, 106, 412-421.	6.2	47
203	Familial paroxysmal exerciseâ€induced dystonia: atypical presentation of autosomal dominant GTPâ€cyclohydrolase 1 deficiency. Developmental Medicine and Child Neurology, 2010, 52, 583-586.	2.1	46
204	<i>LRRK2</i> exonic variants and risk of multiple system atrophy. Neurology, 2014, 83, 2256-2261.	1.1	46
205	Myoclonus-dystonia syndrome due to tyrosine hydroxylase deficiency. Neurology, 2012, 79, 435-441.	1.1	45
206	Peripheral neuropathy predicts nuclear gene defect in patients with mitochondrial ophthalmoplegia. Brain, 2014, 137, 3200-3212.	7.6	45
207	Brain iron accumulation affects myelin-related molecular systems implicated in a rare neurogenetic disease family with neuropsychiatric features. Molecular Psychiatry, 2016, 21, 1599-1607.	7.9	45
208	Mutations in noncoding regions of <i>GJB1</i> are a major cause of X-linked CMT. Neurology, 2017, 88, 1445-1453.	1.1	45
209	Adaptor protein complex 4 deficiency: a paradigm of childhood-onset hereditary spastic paraplegia caused by defective protein trafficking. Human Molecular Genetics, 2020, 29, 320-334.	2.9	45
210	A MÄori specific RFC1 pathogenic repeat configuration in CANVAS, likely due to a founder allele. Brain, 2020, 143, 2673-2680.	7.6	45
211	High frequency of the expanded C9ORF72 hexanucleotide repeat in familial and sporadic Greek ALS patients. Neurobiology of Aging, 2012, 33, 1851.e1-1851.e5.	3.1	44
212	Creation of an Open-Access, Mutation-Defined Fibroblast Resource for Neurological Disease Research. PLoS ONE, 2012, 7, e43099.	2.5	44
213	Mutations in gamma adducin are associated with inherited cerebral palsy. Annals of Neurology, 2013, 74, 805-814.	5.3	44
214	A loss-of-function homozygous mutation in <i>DDX59</i> implicates a conserved DEAD-box RNA helicase in nervous system development and function. Human Mutation, 2018, 39, 187-192.	2.5	44
215	C9orf72 and its Relevance in Parkinsonism and Movement Disorders: A Comprehensive Review of the Literature. Movement Disorders Clinical Practice, 2018, 5, 575-585.	1.5	44
216	Loss of NARS1 impairs progenitor proliferation in cortical brain organoids and leads to microcephaly. Nature Communications, 2020, 11, 4038.	12.8	44

#	Article	IF	CITATIONS
217	Finding genetically-supported drug targets for Parkinson's disease using Mendelian randomization of the druggable genome. Nature Communications, 2021, 12, 7342.	12.8	44
218	Indianâ€subcontinent NBIA: Unusual phenotypes, novel <i>PANK2</i> mutations, and undetermined genetic forms. Movement Disorders, 2010, 25, 1424-1431.	3.9	43
219	Pantothenate kinaseâ€associated neurodegeneration is not a synucleinopathy. Neuropathology and Applied Neurobiology, 2013, 39, 121-131.	3.2	43
220	Hereditary spastic paraplegia in Greece: characterisation of a previously unexplored population using next-generation sequencing. European Journal of Human Genetics, 2016, 24, 857-863.	2.8	43
221	Biallelic mutations in neurofascin cause neurodevelopmental impairment and peripheral demyelination. Brain, 2019, 142, 2948-2964.	7.6	43
222	POLG1 Mutations Manifesting as Autosomal Recessive Axonal Charcot-Marie-Tooth Disease. Archives of Neurology, 2008, 65, 133-6.	4.5	42
223	A Dominant Mutation in FBXO38 Causes Distal Spinal Muscular Atrophy with Calf Predominance. American Journal of Human Genetics, 2013, 93, 976-983.	6.2	42
224	Genome-wide estimate of the heritability of Multiple System Atrophy. Parkinsonism and Related Disorders, 2016, 22, 35-41.	2.2	42
225	The Diagnostic Value of MRI Pattern Recognition in Distal Myopathies. Frontiers in Neurology, 2018, 9, 456.	2.4	42
226	Use of whole genome sequencing to determine genetic basis of suspected mitochondrial disorders: cohort study. BMJ, The, 2021, 375, e066288.	6.0	42
227	Variant Alzheimer's disease with spastic paraparesis and cotton wool plaques is caused by PS-1 mutations that lead to exceptionally high amyloid-beta concentrations. Annals of Neurology, 2000, 48, 806-8.	5.3	42
228	TDP-43 pathology in a patient carrying G2019S LRRK2Âmutation and a novel p.Q124E MAPT. Neurobiology of Aging, 2013, 34, 2889.e5-2889.e9.	3.1	41
229	Hereditary sensory and autonomic neuropathy type 1 (HSANI) caused by a novel mutation in <i>SPTLC2</i> . Neurology, 2013, 80, 2106-2111.	1.1	41
230	<scp>LETM</scp> 1 couples mitochondrial <scp>DNA</scp> metabolism and nutrient preference. EMBO Molecular Medicine, 2018, 10, .	6.9	41
231	Cerebral mitochondrial electron transport chain dysfunction in multiple system atrophy and Parkinson's disease. Scientific Reports, 2019, 9, 6559.	3.3	41
232	What causes intracerebral bleeding after thrombolysis for acute ischaemic stroke? Recent insights into mechanisms and potential biomarkers. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 1127-1136.	1.9	40
233	Loss-of-Function Mutations in FRRS1L Lead to an Epileptic-Dyskinetic Encephalopathy. American Journal of Human Genetics, 2016, 98, 1249-1255.	6.2	40
234	Rare variants in SQSTM1 and VCP genes and risk of sporadic inclusion body myositis. Neurobiology of Aging, 2016, 47, 218.e1-218.e9.	3.1	40

#	Article	IF	CITATIONS
235	Small Vessel Disease and Ischemic Stroke Risk During Anticoagulation for Atrial Fibrillation After Cerebral Ischemia. Stroke, 2021, 52, 91-99.	2.0	40
236	Confirmation that familial clustering and age of onset in late onset Alzheimer's disease are determined at the apolipoprotein E locus. Neuroscience Letters, 1994, 174, 222-224.	2.1	39
237	Dystonic opisthotonus: A "red flag―for neurodegeneration with brain iron accumulation syndromes?. Movement Disorders, 2013, 28, 1325-1329.	3.9	39
238	Clinical features of childhoodâ€onset paroxysmal kinesigenic dyskinesia with <scp><i>PRRT</i></scp> <i>2</i> gene mutations. Developmental Medicine and Child Neurology, 2013, 55, 327-334.	2.1	39
239	The analysis of C9orf72 repeat expansions in a large series of clinically and pathologically diagnosed cases with atypical parkinsonism. Neurobiology of Aging, 2015, 36, 1221.e1-1221.e6.	3.1	39
240	iPSC-derived neuronal models of PANK2-associated neurodegeneration reveal mitochondrial dysfunction contributing to early disease. PLoS ONE, 2017, 12, e0184104.	2.5	39
241	Atypical periodic paralysis and myalgia. Neurology, 2018, 90, e412-e418.	1.1	39
242	Rapidly progressive asymmetrical weakness in Charcot–Marie–Tooth disease type 4J resembles chronic inflammatory demyelinating polyneuropathy. Neuromuscular Disorders, 2013, 23, 399-403.	0.6	38
243	CAV3 mutations causing exercise intolerance, myalgia and rhabdomyolysis: Expanding the phenotypic spectrum of caveolinopathies. Neuromuscular Disorders, 2016, 26, 504-510.	0.6	38
244	Mutations in NKX6-2 Cause Progressive Spastic Ataxia and Hypomyelination. American Journal of Human Genetics, 2017, 100, 969-977.	6.2	38
245	PDE10A and ADCY5 mutations linked to molecular and microstructural basal ganglia pathology. Movement Disorders, 2018, 33, 1961-1965.	3.9	38
246	Loss of UGP2 in brain leads to a severe epileptic encephalopathy, emphasizing that bi-allelic isoform-specific start-loss mutations of essential genes can cause genetic diseases. Acta Neuropathologica, 2020, 139, 415-442.	7.7	38
247	Neuronal intranuclear inclusion disease is genetically heterogeneous. Annals of Clinical and Translational Neurology, 2020, 7, 1716-1725.	3.7	38
248	Neuropathology of Beta-propeller protein associated neurodegeneration (BPAN): a new tauopathy. Acta Neuropathologica Communications, 2015, 3, 39.	5.2	37
249	α-Synuclein mutations cluster around a putative protein loop. Neuroscience Letters, 2013, 546, 67-70.	2.1	36
250	Next-generation sequencing in neuromuscular diseases. Current Opinion in Neurology, 2016, 29, 527-536.	3.6	36
251	Characteristics of Unruptured Compared to Ruptured Intracranial Aneurysms: A Multicenter Case–Control Study. Neurosurgery, 2018, 83, 43-52.	1.1	36
252	Review: Genetics and neuropathology of primary pure dystonia. Neuropathology and Applied Neurobiology, 2012, 38, 520-534.	3.2	35

#	Article	IF	CITATIONS
253	Exome sequencing in an SCA14 family demonstrates its utility in diagnosing heterogeneous diseases. Neurology, 2012, 79, 127-131.	1.1	35
254	Novel C12orf65 mutations in patients with axonal neuropathy and optic atrophy. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 486-492.	1.9	35
255	Investigation of somatic CNVs in brains of synucleinopathy cases using targeted SNCA analysis and single cell sequencing. Acta Neuropathologica Communications, 2019, 7, 219.	5.2	35
256	Clinical heterogeneity and genotypeâ€phenotype correlations in hereditary spastic paraplegia because of Spatacsin mutations (SPG11). European Journal of Neurology, 2008, 15, 1065-1070.	3.3	34
257	Common pathogenic pathways in melanoma and Parkinson disease. Neurology, 2010, 75, 1653-1655.	1.1	34
258	Predictors for a dementia gene mutation based on gene-panel next-generation sequencing of a large dementia referral series. Molecular Psychiatry, 2020, 25, 3399-3412.	7.9	34
259	Cathepsin D deficiency causes juvenile-onset ataxia and distinctive muscle pathology. Neurology, 2014, 83, 1873-1875.	1.1	33
260	The phenotypic and molecular spectrum of PEHO syndrome and PEHO-like disorders. Brain, 2017, 140, e49-e49.	7.6	33
261	MRPS25 mutations impair mitochondrial translation and cause encephalomyopathy. Human Molecular Genetics, 2019, 28, 2711-2719.	2.9	33
262	Bi-allelic variants in HOPS complex subunit VPS41 cause cerebellar ataxia and abnormal membrane trafficking. Brain, 2021, 144, 769-780.	7.6	33
263	Clinical features, with video documentation, of the original familial lewy body parkinsonism caused by αâ€synuclein triplication (Iowa kindred). Movement Disorders, 2011, 26, 2134-2136.	3.9	32
264	Investigation of next-generation sequencing technologies as a diagnostic tool for amyotrophic lateral sclerosis. Neurobiology of Aging, 2015, 36, 1600.e5-1600.e8.	3.1	32
265	A novel human pain insensitivity disorder caused by a point mutation in ZFHX2. Brain, 2018, 141, 365-376.	7.6	32
266	De Novo and Bi-allelic Pathogenic Variants in NARS1 Cause Neurodevelopmental Delay Due to Toxic Gain-of-Function and Partial Loss-of-Function Effects. American Journal of Human Genetics, 2020, 107, 311-324.	6.2	32
267	Dissecting the Phenotype and Genotype of <scp><i>PLA2G6</i></scp> â€Related Parkinsonism. Movement Disorders, 2022, 37, 148-161.	3.9	32
268	Motor neuron pathology in CANVAS due to <i>RFC1</i> expansions. Brain, 2022, 145, 2121-2132.	7.6	32
269	A novel <i>Frabin</i> (FGD4) nonsense mutation p.R275X associated with phenotypic variability in CMT4H. Neurology, 2009, 72, 617-620.	1.1	31
270	Detection of novel mutations and review of published data suggests that hereditary spastic paraplegia caused by spastin (SPAST) mutations is found more often in males. Journal of the Neurological Sciences, 2011, 306, 62-65.	0.6	31

#	Article	IF	CITATIONS
271	A 30-unit hexanucleotide repeat expansion in C9orf72 induces pathological lesions with dipeptide-repeat proteins and RNA foci, but not TDP-43 inclusions and clinical disease. Acta Neuropathologica, 2015, 130, 599-601.	7.7	31
272	<i>SIGMAR1</i> mutation associated with autosomal recessive Silver-like syndrome. Neurology, 2016, 87, 1607-1612.	1.1	31
273	Phenotypes, genotypes, and the management of paroxysmal movement disorders. Developmental Medicine and Child Neurology, 2018, 60, 559-565.	2.1	31
274	Bi-allelic ADARB1 Variants Associated with Microcephaly, Intellectual Disability, and Seizures. American Journal of Human Genetics, 2020, 106, 467-483.	6.2	31
275	Genomeâ€Wide Association Study Identifies Risk Loci for Cluster Headache. Annals of Neurology, 2021, 90, 193-202.	5.3	31
276	Apolipoprotein E4 and traumatic brain injury. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 77, 1106-1107.	1.9	30
277	Faulty cardiac repolarization reserve in alternating hemiplegia of childhood broadens the phenotype. Brain, 2015, 138, 2859-2874.	7.6	30
278	Homozygous Missense Variants in NTNG2, Encoding a Presynaptic Netrin-G2 Adhesion Protein, Lead to a Distinct Neurodevelopmental Disorder. American Journal of Human Genetics, 2019, 105, 1048-1056.	6.2	30
279	Truncating mutations in <i>SPAST</i> patients are associated with a high rate of psychiatric comorbidities in hereditary spastic paraplegia. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 681-687.	1.9	30
280	Chromosome 13 dementia syndromes as models of neurodegeneration. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2001, 8, 277-284.	3.0	29
281	New mutations, genotype phenotype studies and manifesting carriers in giant axonal neuropathy. Journal of Neurology, Neurosurgery and Psychiatry, 2007, 78, 1267-1270.	1.9	29
282	GJB1 gene mutations in suspected inflammatory demyelinating neuropathies not responding to treatment. Journal of Neurology, Neurosurgery and Psychiatry, 2009, 80, 699-700.	1.9	29
283	Mutations in Membrin/ GOSR2 Reveal Stringent Secretory Pathway Demands of Dendritic Growth and Synaptic Integrity. Cell Reports, 2017, 21, 97-109.	6.4	29
284	A novel complex neurological phenotype due to a homozygous mutation in FDX2. Brain, 2018, 141, 2289-2298.	7.6	29
285	Proximity extension assay testing reveals novel diagnostic biomarkers of atypical parkinsonian syndromes. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 768-773.	1.9	29
286	Defining the clinical, molecular and imaging spectrum of adaptor protein complex 4-associated hereditary spastic paraplegia. Brain, 2020, 143, 2929-2944.	7.6	29
287	Sporadic inclusion body myositis: the genetic contributions to the pathogenesis. Orphanet Journal of Rare Diseases, 2014, 9, 88.	2.7	28
288	C19orf12 mutation leads to a pallido-pyramidal syndrome. Gene, 2014, 537, 352-356.	2.2	28

#	Article	IF	CITATIONS
289	A <i>de novo</i> dominant mutation in <i>KIF1A</i> associated with axonal neuropathy, spasticity and autism spectrum disorder. Journal of the Peripheral Nervous System, 2017, 22, 460-463.	3.1	28
290	Early-infantile onset epilepsy and developmental delay caused by bi-allelic GAD1 variants. Brain, 2020, 143, 2388-2397.	7.6	28
291	Loss of function mutations in GEMIN5 cause a neurodevelopmental disorder. Nature Communications, 2021, 12, 2558.	12.8	28
292	Apolipoprotein E genotype does not affect the age of onset of dementia in families with defined tau mutations. Neuroscience Letters, 1999, 260, 193-195.	2.1	27
293	Homozygosity mapping through whole genome analysis identifies a <i>COL18A1</i> mutation in an Indian family presenting with an autosomal recessive neurological disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2009, 150B, 993-997.	1.7	27
294	Youngâ€onset parkinsonism due to homozygous duplication of αâ€synuclein in a consanguineous family. Movement Disorders, 2012, 27, 1829-1830.	3.9	27
295	Pilot phenotype and natural history study of hereditary neuropathies caused by mutations in the HSPB1 gene. Neuromuscular Disorders, 2017, 27, 50-56.	0.6	27
296	Mutations in valosin-containing protein (VCP) decrease ADP/ATP translocation across the mitochondrial membrane and impair energy metabolism in human neurons. Journal of Biological Chemistry, 2017, 292, 8907-8917.	3.4	27
297	Nonsyndromic Parkinson disease in a family with autosomal dominant optic atrophy due to <i>OPA1</i> mutations. Neurology: Genetics, 2017, 3, e188.	1.9	27
298	DNA isolation protocol effects on nuclear DNA analysis by microarrays, droplet digital PCR, and whole genome sequencing, and on mitochondrial DNA copy number estimation. PLoS ONE, 2017, 12, e0180467.	2.5	27
299	KDM5A mutations identified in autism spectrum disorder using forward genetics. ELife, 2020, 9, .	6.0	27
300	The instability of the BTB-KELCH protein Gigaxonin causes Giant Axonal Neuropathy and constitutes a new penetrant and specific diagnostic test. Acta Neuropathologica Communications, 2014, 2, 47.	5.2	26
301	Novel HSAN1 Mutation in Serine Palmitoyltransferase Resides at a Putative Phosphorylation Site That Is Involved in Regulating Substrate Specificity. NeuroMolecular Medicine, 2015, 17, 47-57.	3.4	26
302	Pure Cerebellar Ataxia with Homozygous Mutations in the PNPLA6 Gene. Cerebellum, 2017, 16, 262-267.	2.5	26
303	Genotypeâ€phenotype correlations, dystonia and disease progression in spinocerebellar ataxia type 14. Movement Disorders, 2018, 33, 1119-1129.	3.9	26
304	<scp><i>RFC1</i></scp> Intronic Repeat Expansions Absent in Pathologically Confirmed Multiple Systems Atrophy. Movement Disorders, 2020, 35, 1277-1279.	3.9	26
305	Genetic testing in dementia — utility and clinical strategies. Nature Reviews Neurology, 2021, 17, 23-36.	10.1	26
306	latrogenic cerebral amyloid angiopathy: an emerging clinical phenomenon. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 693-700.	1.9	26

#	Article	IF	CITATIONS
307	The pallidopyramidal syndromes. Current Opinion in Neurology, 2013, 26, 381-394.	3.6	25
308	Multiple system atrophy is not caused by C9orf72 hexanucleotide repeat expansions. Neurobiology of Aging, 2015, 36, 1223.e1-1223.e2.	3.1	25
309	Exome sequencing uncovers hidden pathways in familial and sporadic ALS. Nature Neuroscience, 2015, 18, 611-613.	14.8	25
310	RFC1 expansions can mimic hereditary sensory neuropathy with cough and Sjögren syndrome. Brain, 2020, 143, e82-e82.	7.6	25
311	An update on MSA: premotor and non-motor features open a window of opportunities for early diagnosis and intervention. Journal of Neurology, 2020, 267, 2754-2770.	3.6	25
312	Genetic and Clinical Heterogeneity in Thirteen New Cases with Aceruloplasminemia. Atypical Anemia as a Clue for an Early Diagnosis. International Journal of Molecular Sciences, 2020, 21, 2374.	4.1	25
313	<i>RFC1</i> -related ataxia is a mimic of early multiple system atrophy. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 444-446.	1.9	25
314	A novel mutation in the nerveâ€specific 5′UTR of the <i>GJB1</i> gene causes Xâ€linked Charcotâ€Marieâ€Tod disease. Journal of the Peripheral Nervous System, 2011, 16, 65-70.	oth 3.1	24
315	Kohlschütter-Tönz Syndrome: Mutations in <i>ROGDI</i> and Evidence of Genetic Heterogeneity. Human Mutation, 2013, 34, 296-300.	2.5	24
316	Heterogeneity in clinical features and disease severity in ataxia-associated SYNE1 mutations. Journal of Neurology, 2016, 263, 1503-1510.	3.6	24
317	Gene co-expression networks shed light into diseases of brain iron accumulation. Neurobiology of Disease, 2016, 87, 59-68.	4.4	24
318	Association of enlarged perivascular spaces and anticoagulant-related intracranial hemorrhage. Neurology, 2020, 95, e2192-e2199.	1.1	24
319	Clinical and genetic analysis of spinocerebellar ataxia type 11. Cerebellum, 2008, 7, 159-164.	2.5	23
320	Low Prevalence of NOTCH2NLC GGC Repeat Expansion in White Patients with Movement Disorders. Movement Disorders, 2021, 36, 251-255.	3.9	23
321	A novel TRK A (NTRK1) mutation associated with hereditary sensory and autonomic neuropathy type V. Annals of Neurology, 2001, 49, 521-5.	5.3	23
322	X inactivation in females with X-linked Charcot–Marie–Tooth disease. Neuromuscular Disorders, 2012, 22, 617-621.	0.6	22
323	Analysis of Parkinson's disease brain–derived DNA for alphaâ€synuclein coding somatic mutations. Movement Disorders, 2014, 29, 1060-1064.	3.9	22
324	Bi-allelic Variants in the GPI Transamidase Subunit PIGK Cause a Neurodevelopmental Syndrome with Hypotonia, Cerebellar Atrophy, and Epilepsy. American Journal of Human Genetics, 2020, 106, 484-495.	6.2	22

#	Article	IF	CITATIONS
325	Biallelic and monoallelic variants in PLXNA1 are implicated in a novel neurodevelopmental disorder with variable cerebral and eye anomalies. Genetics in Medicine, 2021, 23, 1715-1725.	2.4	22
326	Biallelic variants in <i>HPDL</i> cause pure and complicated hereditary spastic paraplegia. Brain, 2021, 144, 1422-1434.	7.6	22
327	Neuropathological features of genetically confirmed DYT1 dystonia: investigating disease-specific inclusions. Acta Neuropathologica Communications, 2014, 2, 159.	5.2	21
328	Concomitant progressive supranuclear palsy and chronic traumatic encephalopathy in a boxer. Acta Neuropathologica Communications, 2014, 2, 24.	5.2	21
329	Complexity of the Genetics and Clinical Presentation of Spinocerebellar Ataxia 17. Frontiers in Cellular Neuroscience, 2018, 12, 429.	3.7	21
330	Assessment of APOE in atypical parkinsonism syndromes. Neurobiology of Disease, 2019, 127, 142-146.	4.4	21
331	Biallelic MADD variants cause a phenotypic spectrum ranging from developmental delay to a multisystem disorder. Brain, 2020, 143, 2437-2453.	7.6	21
332	Biallelic MFSD2A variants associated with congenital microcephaly, developmental delay, and recognizable neuroimaging features. European Journal of Human Genetics, 2020, 28, 1509-1519.	2.8	21
333	Expanding the molecular and phenotypic spectrum of truncating <i>MT-ATP6</i> mutations. Neurology: Genetics, 2020, 6, e381.	1.9	21
334	PANK2 gene analysis confirms genetic heterogeneity in neurodegeneration with brain iron accumulation (NBIA) but mutations are rare in other types of adult neurodegenerative disease. Neuroscience Letters, 2006, 407, 162-165.	2.1	20
335	Genetic screening of Greek patients with Huntington's disease phenocopies identifies an SCA8 expansion. Journal of Neurology, 2012, 259, 1874-1878.	3.6	20
336	Multiple system atrophy: the application of genetics in understanding etiology. Clinical Autonomic Research, 2015, 25, 19-36.	2.5	20
337	Prevalence of familial cluster headache: a systematic review and meta-analysis. Journal of Headache and Pain, 2020, 21, 37.	6.0	20
338	An ancestral 10-bp repeat expansion in <i>VWA1</i> causes recessive hereditary motor neuropathy. Brain, 2021, 144, 584-600.	7.6	20
339	Expanding the Spectrum of Movement Disorders Associated With <i>C9orf72</i> Hexanucleotide Expansions. Neurology: Genetics, 2021, 7, e575.	1.9	20
340	Recapitulation of endogenous 4R tau expression and formation of insoluble tau in directly reprogrammed human neurons. Cell Stem Cell, 2022, 29, 918-932.e8.	11.1	20
341	Identical twins with Leucine rich repeat kinase type 2 mutations discordant for Parkinson's disease. Movement Disorders, 2012, 27, 1323-1323.	3.9	19
342	A novel p.Glu175X premature stop mutation in the Câ€ŧerminal end of HSP27 is a cause of CMT2. Journal of the Peripheral Nervous System, 2012, 17, 201-205.	3.1	19

#	Article	IF	CITATIONS
343	Clinicopathologic and molecular spectrum of <i>RNASEH1</i> -related mitochondrial disease. Neurology: Genetics, 2017, 3, e149.	1.9	19
344	A Review of Copy Number Variants in Inherited Neuropathies. Current Genomics, 2018, 19, 412-419.	1.6	19
345	Neurodegeneration with brain iron accumulation. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 145, 157-166.	1.8	19
346	CANVAS: a late onset ataxia due to biallelic intronic AAGGG expansions. Journal of Neurology, 2021, 268, 1119-1126.	3.6	19
347	Bi-allelic premature truncating variants in LTBP1 cause cutis laxa syndrome. American Journal of Human Genetics, 2021, 108, 1095-1114.	6.2	19
348	Newly described form of X-linked arthrogryposis maps to the long arm of the human X chromosome. , 1998, 78, 450-454.		18
349	Exome sequencing expands the mutational spectrum of SPC8 in a family with spasticity responsive to I-DOPA treatment. Journal of Neurology, 2013, 260, 2414-2416.	3.6	18
350	Benefit of carbamazepine in a patient with hemiplegic migraine associated withPRRT2mutation. Developmental Medicine and Child Neurology, 2014, 56, 910-910.	2.1	18
351	Ongoing Developments in Sporadic Inclusion Body Myositis. Current Rheumatology Reports, 2014, 16, 477.	4.7	18
352	Assessment of Parkinson's disease risk loci in Greece. Neurobiology of Aging, 2014, 35, 442.e9-442.e16.	3.1	18
353	DYT6 Dystonia: A Neuropathological Study. Neurodegenerative Diseases, 2016, 16, 273-278.	1.4	18
354	Homozygous mutation in <i>HSPB1</i> causing distal vacuolar myopathy and motor neuropathy. Neurology: Genetics, 2017, 3, e168.	1.9	18
355	Mutations in XRCC1 cause cerebellar ataxia and peripheral neuropathy. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 1230-1232.	1.9	18
356	Clinical, neuroimaging, and molecular spectrum of <i>TECPR2</i> â€associated hereditary sensory and autonomic neuropathy with intellectual disability. Human Mutation, 2021, 42, 762-776.	2.5	18
357	The diagnosis of adrenal insufficiency in a patient with Allgrove syndrome and a novel mutation in the ALADIN gene. Metabolism: Clinical and Experimental, 2005, 54, 200-205.	3.4	17
358	Advances in the Genetics of Parkinson's Disease: A Guide for the Clinician. Movement Disorders Clinical Practice, 2014, 1, 3-13.	1.5	17
359	A novel HTRA1 exon 2 mutation causes loss of protease activity in a Pakistani CARASIL patient. Journal of Neurology, 2015, 262, 1369-1372.	3.6	17
360	Genotype-phenotype correlations and expansion of the molecular spectrum of AP4M1-related hereditary spastic paraplegia. Orphanet Journal of Rare Diseases, 2017, 12, 172.	2.7	17

#	Article	IF	CITATIONS
361	Autonomic dysfunction in genetic forms of synucleinopathies. Movement Disorders, 2018, 33, 359-371.	3.9	17
362	ARSA variants in α-synucleinopathies. Brain, 2019, 142, e70-e70.	7.6	17
363	Development of MRC Centre MRI calf muscle fat fraction protocol as a sensitive outcome measure in Hereditary Sensory Neuropathy Type 1. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 895-906.	1.9	17
364	Biallelic variants in <i>SLC38A3</i> encoding a glutamine transporter cause epileptic encephalopathy. Brain, 2022, 145, 909-924.	7.6	17
365	Small vessel disease burden and intracerebral haemorrhage in patients taking oral anticoagulants. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 805-814.	1.9	17
366	Alzheimer's disease neuropathological change three decades after iatrogenic amyloid-β transmission. Acta Neuropathologica, 2021, 142, 211-215.	7.7	17
367	Metabolically induced intracellular pH changes activate mitophagy, autophagy, and cell protection in familial forms of Parkinson's disease. FEBS Journal, 2022, 289, 699-711.	4.7	17
368	TMEM63C mutations cause mitochondrial morphology defects and underlie hereditary spastic paraplegia. Brain, 2022, 145, 3095-3107.	7.6	17
369	Mutational analysis of parkin and PINK1 in multiple system atrophy. Neurobiology of Aging, 2011, 32, 548.e7.	3.1	16
370	Comprehensive analysis of the <i>TRPV4</i> gene in a large series of inherited neuropathies and controls. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 1204-1209.	1.9	16
371	The effects of an intronic polymorphism in TOMM40 and APOE genotypes in sporadic inclusion body myositis. Neurobiology of Aging, 2015, 36, 1766.e1-1766.e3.	3.1	16
372	Late-onset Lafora disease with prominent parkinsonism due to a rare mutation in <i>EPM2A</i> . Neurology: Genetics, 2016, 2, e101.	1.9	16
373	Shared Genetics of Multiple System Atrophy and Inflammatory Bowel Disease. Movement Disorders, 2021, 36, 449-459.	3.9	16
374	Coding and noncoding variants in EBF3 are involved in HADDS and simplex autism. Human Genomics, 2021, 15, 44.	2.9	16
375	Delineating the molecular and phenotypic spectrum of the SETD1B-related syndrome. Genetics in Medicine, 2021, 23, 2122-2137.	2.4	16
376	A biallelic variant in CLRN2 causes non-syndromic hearing loss in humans. Human Genetics, 2021, 140, 915-931.	3.8	16
377	Automated Brainstem Segmentation Detects Differential Involvement in Atypical Parkinsonian Syndromes. Journal of Movement Disorders, 2020, 13, 39-46.	1.3	16
378	Familial Idiopathic Brain Calcification – A New and Familial α-Synucleinopathy?. European Neurology, 2003, 49, 223-226.	1.4	15

#	Article	IF	CITATIONS
379	Neurology and orthopaedics. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 78, 224-232.	1.9	15
380	Triple A syndrome: A novel compound heterozygous mutation in the AAAS gene in an Italian patient without adrenal insufficiency. Journal of the Neurological Sciences, 2010, 290, 150-152.	0.6	15
381	Analysis of ATP13A2 in large neurodegeneration with brain iron accumulation (NBIA) and dystonia-parkinsonism cohorts. Neuroscience Letters, 2012, 523, 35-38.	2.1	15
382	Recent advances in bulbar syndromes. Current Opinion in Neurology, 2014, 27, 506-514.	3.6	15
383	<i><scp>MFN2</scp></i> deletion of exons 7 and 8: founder mutation in the <scp>UK</scp> population. Journal of the Peripheral Nervous System, 2015, 20, 67-71.	3.1	15
384	The 4H syndrome due to RNF216 mutation. Parkinsonism and Related Disorders, 2015, 21, 1122-1123.	2.2	15
385	3′-UTR SNP rs2229611 in G6PC1 affects mRNA stability, expression and Glycogen Storage Disease type-la risk. Clinica Chimica Acta, 2017, 471, 46-54.	1.1	15
386	Familial childhood-onset progressive cerebellar syndrome associated with the <i>ATP1A3</i> mutation. Neurology: Genetics, 2017, 3, e145.	1.9	15
387	Association of functional MMP-2 gene variant with intracranial aneurysms: case-control genetic association study and meta-analysis. British Journal of Neurosurgery, 2018, 32, 255-259.	0.8	15
388	Adult-onset neuronal intranuclear inclusion disease mimicking Fragile X-associated tremor-ataxia syndrome in ethnic Chinese patients. Parkinsonism and Related Disorders, 2020, 74, 25-27.	2.2	15
389	Sequencing analysis of the ITPR1 gene in a pure autosomal dominant spinocerebellar ataxia series. Movement Disorders, 2010, 25, 771-773.	3.9	14
390	THAP1 mutations in a Greek primary blepharospasm series. Parkinsonism and Related Disorders, 2013, 19, 404-405.	2.2	14
391	HLA-DRB*1501 associations with magnetic resonance imaging measures of grey matter pathology in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2016, 7, 47-52.	2.0	14
392	Multiple system atrophy: genetic risks and alpha-synuclein mutations. F1000Research, 2017, 6, 2072.	1.6	14
393	Biallelic variants in <i>ADARB1</i> , encoding a dsRNA-specific adenosine deaminase, cause a severe developmental and epileptic encephalopathy. Journal of Medical Genetics, 2021, 58, 495-504.	3.2	14
394	<scp>GGC</scp> Repeat Expansion in <scp><i>NOTCH2NLC</i></scp> Is Rare in European Leukoencephalopathy. Annals of Neurology, 2020, 88, 641-642.	5.3	14
395	Loss of TNR causes a nonprogressive neurodevelopmental disorder with spasticity and transient opisthotonus. Genetics in Medicine, 2020, 22, 1061-1068.	2.4	14
396	A geroscience approach for Parkinson's disease: Conceptual framework and design of PROPAG-AGEING project. Mechanisms of Ageing and Development, 2021, 194, 111426.	4.6	14

#	Article	IF	CITATIONS
397	Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS): genetic and clinical aspects. Practical Neurology, 2022, 22, 14-18.	1.1	14
398	High diagnostic rate of trio exome sequencing in consanguineous families with neurogenetic diseases. Brain, 2022, 145, 1507-1518.	7.6	14
399	Pupil abnormalities in 131 cases of genetically defined inherited peripheral neuropathy. Eye, 2009, 23, 966-974.	2.1	13
400	Friedreich's ataxia and other hereditary ataxias in Greece: An 18-year perspective. Journal of the Neurological Sciences, 2014, 336, 87-92.	0.6	13
401	De novo <i>KCNA2</i> mutations cause hereditary spastic paraplegia. Annals of Neurology, 2017, 81, 326-328.	5.3	13
402	IGHMBP2 mutation associated with organ-specific autonomic dysfunction. Neuromuscular Disorders, 2018, 28, 1012-1015.	0.6	13
403	Novel fluid biomarkers to differentiate frontotemporal dementia and dementia with Lewy bodies from Alzheimer's disease: A systematic review. Journal of the Neurological Sciences, 2020, 415, 116886.	0.6	13
404	<i>MYORG</i> -related disease is associated with central pontine calcifications and atypical parkinsonism. Neurology: Genetics, 2020, 6, e399.	1.9	13
405	GGC repeat expansion in NOTCH2NLC is rare in European patients with essential tremor. Brain, 2020, 143, e57-e57.	7.6	13
406	Pontocerebellar hypoplasia due to bi-allelic variants in MINPP1. European Journal of Human Genetics, 2021, 29, 411-421.	2.8	13
407	Molecular Genetics of Autosomal-Dominant Demyelinating Charcot-Marie-Tooth Disease. NeuroMolecular Medicine, 2006, 8, 43-62.	3.4	13
408	WARS2 mutations cause dopa-responsive early-onset parkinsonism and progressive myoclonus ataxia. Parkinsonism and Related Disorders, 2022, 94, 54-61.	2.2	13
409	Apolipoprotein E alleles but neither apolipoprotein B nor apolipoprotein AI/CIII alleles are associated with late onset, familial Alzheimer's disease. Neuroscience Letters, 1995, 188, 202-204.	2.1	12
410	The frequency of spinocerebellar ataxia type 23 in a UK population. Journal of Neurology, 2013, 260, 856-859.	3.6	12
411	Madras motor neuron disease (MMND) is distinct from the riboflavin transporter genetic defects that cause Brown–Vialetto–Van Laere syndrome. Journal of the Neurological Sciences, 2013, 334, 119-122.	0.6	12
412	A novel <i>SLC1A4</i> homozygous mutation causing congenital microcephaly, epileptic encephalopathy and spastic tetraparesis: a video-EEG and tractography – case study. Journal of Neurogenetics, 2018, 32, 316-321.	1.4	12
413	Kleine‣evin syndrome is associated with LMOD3 variants. Journal of Sleep Research, 2019, 28, e12718.	3.2	12
414	<i>PUS3</i> mutations are associated with intellectual disability, leukoencephalopathy, and nephropathy. Neurology: Genetics, 2019, 5, e306.	1.9	12

#	Article	IF	CITATIONS
415	Autosomal dominant optic atrophy and cataract "plus―phenotype including axonal neuropathy. Neurology: Genetics, 2019, 5, e322.	1.9	12
416	Longer term stroke risk in intracerebral haemorrhage survivors. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 840-845.	1.9	12
417	Rare novel CYP2U1 and ZFYVE26 variants identified in two Pakistani families with spastic paraplegia. Journal of the Neurological Sciences, 2020, 411, 116669.	0.6	12
418	Defective phosphatidylethanolamine biosynthesis leads to a broad ataxia-spasticity spectrum. Brain, 2021, 144, e30-e30.	7.6	12
419	Novel <i>NDUFA12</i> variants are associated with isolated complex I defect and variable clinical manifestation. Human Mutation, 2021, 42, 699-710.	2.5	12
420	Bi-allelic variants in OGDHL cause a neurodevelopmental spectrum disease featuring epilepsy, hearing loss, visual impairment, and ataxia. American Journal of Human Genetics, 2021, 108, 2368-2384.	6.2	12
421	A Huntington's disease phenocopy characterized by pallido-nigro-luysian degeneration with brain iron accumulation and p62-positive glial inclusions. Neuropathology and Applied Neurobiology, 2010, 36, 551-557.	3.2	11
422	Paroxysmal Kinesigenic Dyskinesia May Be Misdiagnosed in Co-occurring Gilles de la Tourette Syndrome. Movement Disorders Clinical Practice, 2014, 1, 84-86.	1.5	11
423	Severe axonal neuropathy is a late manifestation of SPG11. Journal of Neurology, 2016, 263, 2278-2286.	3.6	11
424	MSA or SCA 17? A clinicopathological case update. Movement Disorders, 2016, 31, 1582-1584.	3.9	11
425	Calpainopathy with macrophage-rich, regional inflammatory infiltrates. Neuromuscular Disorders, 2017, 27, 738-741.	0.6	11
426	A 30-year history of MPAN case from Russia. Clinical Neurology and Neurosurgery, 2017, 159, 111-113.	1.4	11
427	Brainstem phenotype of cathepsin A–related arteriopathy with strokes and leukoencephalopathy. Neurology: Genetics, 2017, 3, e165.	1.9	11
428	Adaptive regulation of riboflavin transport in heart: effect of dietary riboflavin deficiency in cardiovascular pathogenesis. Molecular and Cellular Biochemistry, 2018, 440, 147-156.	3.1	11
429	LRP10 in α-synucleinopathies. Lancet Neurology, The, 2018, 17, 1033-1034.	10.2	11
430	Lysosomal storage disorder gene variants in multiple system atrophy. Brain, 2018, 141, e53-e53.	7.6	11
431	Mutation in <i>RNF170</i> causes sensory ataxic neuropathy with vestibular areflexia: a CANVAS mimic. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1237-1238.	1.9	11
432	Haptoglobin genotype and outcome after aneurysmal subarachnoid haemorrhage. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 305-313.	1.9	11

#	Article	IF	CITATIONS
433	Expanding the phenotype of <i>PIGS</i> â€associated early onset epileptic developmental encephalopathy. Epilepsia, 2021, 62, e35-e41.	5.1	11
434	Biallelic variants in KARS1 are associated with neurodevelopmental disorders and hearing loss recapitulated by the knockout zebrafish. Genetics in Medicine, 2021, 23, 1933-1943.	2.4	11
435	Loss of C2orf69 defines a fatal autoinflammatory syndrome in humans and zebrafish that evokes a glycogen-storage-associated mitochondriopathy. American Journal of Human Genetics, 2021, 108, 1301-1317.	6.2	11
436	Biallelic variants in PCDHGC4 cause a novel neurodevelopmental syndrome with progressive microcephaly, seizures, and joint anomalies. Genetics in Medicine, 2021, 23, 2138-2149.	2.4	11
437	Bi-allelic variants in SPATA5L1 lead to intellectual disability, spastic-dystonic cerebral palsy, epilepsy, and hearing loss. American Journal of Human Genetics, 2021, 108, 2006-2016.	6.2	11
438	Expanding the phenotypic spectrum of <i>BCS1L</i> â€related mitochondrial disease. Annals of Clinical and Translational Neurology, 2021, 8, 2155-2165.	3.7	11
439	MRI and CT imaging biomarkers of cerebral amyloid angiopathy in lobar intracerebral hemorrhage. International Journal of Stroke, 2023, 18, 85-94.	5.9	11
440	Genetic characterization of a familial non-specific dementia originating in Jutland, Denmark. Journal of the Neurological Sciences, 1993, 114, 138-143.	0.6	10
441	What are the experiences of adults returning to work following recovery from Guillain-Barré syndrome? An interpretative phenomenological analysis. Disability and Rehabilitation, 2009, 31, 1817-1827.	1.8	10
442	Defective N-linked protein glycosylation pathway in congenital myasthenic syndromes. Brain, 2013, 136, 692-695.	7.6	10
443	Using human induced pluripotent stem cells to model cerebellar disease: Hope and hype. Journal of Neurogenetics, 2015, 29, 95-102.	1.4	10
444	Tubular Aggregates and Cylindrical Spirals Have Distinct Immunohistochemical Signatures. Journal of Neuropathology and Experimental Neurology, 2016, 75, 1171-1178.	1.7	10
445	Paroxysmal Movement Disorder and Epilepsy Caused by a De Novo Truncating Mutation in KAT6A. Journal of Pediatric Genetics, 2018, 07, 114-116.	0.7	10
446	Homozygous missense <i>WIPI2</i> variants cause a congenital disorder of autophagy with neurodevelopmental impairments of variable clinical severity and disease course. Brain Communications, 2021, 3, fcab183.	3.3	10
447	Cerebral Small Vessel Disease and Functional Outcome Prediction After Intracerebral Hemorrhage. Neurology, 2021, 96, e1954-e1965.	1.1	10
448	A human importin-β-related disorder: Syndromic thoracic aortic aneurysm caused by bi-allelic loss-of-function variants in IPO8. American Journal of Human Genetics, 2021, 108, 1115-1125.	6.2	10
449	Prominent and Regressive Brain Developmental Disorders Associated with Nance-Horan Syndrome. Brain Sciences, 2021, 11, 1150.	2.3	10
450	Clinical features of early onset, familial Alzheimer's disease linked to chromosome 14. American Journal of Medical Genetics Part A, 1995, 60, 44-52.	2.4	9

#	Article	IF	CITATIONS
451	Thinning of the Corpus Callosum and Cerebellar Atrophy is Correlated with Phenotypic Severity in a		
		_	_

#	Article	IF	CITATIONS
469	Genetic and phenotypic characterisation of inherited myopathies in a tertiary neuromuscular centre. Neuromuscular Disorders, 2019, 29, 747-757.	0.6	8
470	Impaired Bioenergetics in Mutant Mitochondrial DNA Determines Cell Fate During Seizure-Like Activity. Molecular Neurobiology, 2019, 56, 321-334.	4.0	8
471	A relatively common homozygous TRAPPC4 splicing variant is associated with an early-infantile neurodegenerative syndrome. European Journal of Human Genetics, 2021, 29, 271-279.	2.8	8
472	Integrating protein networks and machine learning for disease stratification in the Hereditary Spastic Paraplegias. IScience, 2021, 24, 102484.	4.1	8
473	Cerebellar ataxia, neuropathy, vestibular areflexia syndrome: genetic and clinical insights. Current Opinion in Neurology, 2021, 34, 556-564.	3.6	8
474	Pathogenic variants in PIDD1 lead to an autosomal recessive neurodevelopmental disorder with pachygyria and psychiatric features. European Journal of Human Genetics, 2021, 29, 1226-1234.	2.8	8
475	Bi-allelic loss-of-function variants in BCAS3 cause a syndromic neurodevelopmental disorder. American Journal of Human Genetics, 2021, 108, 1069-1082.	6.2	8
476	Investigating RFC1 expansions in sporadic amyotrophic lateral sclerosis. Journal of the Neurological Sciences, 2021, 430, 118061.	0.6	8
477	Biallelic <i>ADAM22</i> pathogenic variants cause progressive encephalopathy and infantile-onset refractory epilepsy. Brain, 2022, 145, 2301-2312.	7.6	8
478	Construction of a Detailed Physical and Transcript Map of the FTDP-17 Candidate Region on Chromosome 17q21. Genomics, 1999, 60, 129-136.	2.9	7
479	Analysis of spinocerebellar ataxias due to expanded triplet repeats in Greek patients with cerebellar ataxia. Journal of the Neurological Sciences, 2012, 318, 178-180.	0.6	7
480	Absence of HINT1 mutations in a UK and Spanish cohort of patients with inherited neuropathies. Journal of Neurology, 2015, 262, 1984-1986.	3.6	7
481	Charcot-Marie-Tooth disease type 2C and scapuloperoneal muscular atrophy overlap syndrome in a patient with the R232C TRPV4 mutation. Journal of Neurology, 2015, 262, 1972-1975.	3.6	7
482	Pathological relationships involving iron and myelin may constitute a shared mechanism linking various rare and common brain diseases. Rare Diseases (Austin, Tex), 2016, 4, e1198458.	1.8	7
483	Sequencing analysis of the SCA6 CAG expansion excludes an influence of repeat interruptions on disease onset. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 1226-1227.	1.9	7
484	Electroclinical history of a five-year-old girl with GRIN1-related early-onset epileptic encephalopathy: a video-case study. Epileptic Disorders, 2018, 20, 423-427.	1.3	7
485	Genotype-Phenotype Correlations in Charcot-Marie-Tooth Disease Due to MTMR2 Mutations and Implications in Membrane Trafficking. Frontiers in Neuroscience, 2019, 13, 974.	2.8	7
486	Continuum of phenotypes in hereditary motor and sensory neuropathy with proximal predominance and Charcot–Marie–Tooth patients with <i>TFG</i> mutation. American Journal of Medical Genetics, Part A, 2019, 179, 1507-1515.	1.2	7

#	Article	IF	CITATIONS
487	Biotin-Thiamine Responsive Encephalopathy: Report of an Egyptian Family with a Novel SLC19A3 Mutation and Review of the Literature. Journal of Pediatric Genetics, 2019, 08, 100-108.	0.7	7
488	Hereditary polyneuropathy with optic atrophy due to PDXK variant leading to impaired Vitamin B6 metabolism. Neuromuscular Disorders, 2020, 30, 583-589.	0.6	7
489	A glimpse of the genetics of youngâ€onset Parkinson's disease in Central Asia. Molecular Genetics & Genomic Medicine, 2021, 9, e1671.	1.2	7
490	Two novel biâ€allelic <scp> <i>KDELR2 </i> </scp> missense variants cause osteogenesis imperfecta with neurodevelopmental features. American Journal of Medical Genetics, Part A, 2021, 185, 2241-2249.	1.2	7
491	A Recurrent <scp><i>VPS16</i></scp> p.Arg187* Nonsense Variant in Earlyâ€Onset Generalized Dystonia. Movement Disorders, 2021, 36, 1984-1985.	3.9	7
492	<i>SORL1</i> mutation in a Greek family with Parkinson's disease and dementia. Annals of Clinical and Translational Neurology, 2021, 8, 1961-1969.	3.7	7
493	Spastic paraplegia preceding PSEN1 â€related familial Alzheimer's disease. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2021, 13, e12186.	2.4	7
494	Heterozygous <scp><i>EIF2AK2</i></scp> Variant Causes Adolescenceâ€Onset Generalized Dystonia Partially Responsive to <scp>DBS</scp> . Movement Disorders Clinical Practice, 2022, 9, 268-271.	1.5	7
495	<scp>Elâ€Hattabâ€Alkuraya</scp> syndrome caused by biallelic <scp><i>WDR45B</i></scp> pathogenic variants: Further delineation of the phenotype and genotype. Clinical Genetics, 2022, 101, 530-540.	2.0	7
496	Genetic defects are common in myopathies with tubular aggregates. Annals of Clinical and Translational Neurology, 2022, 9, 4-15.	3.7	7
497	Genotypic and phenotypic heterogeneity in familial microcoria. British Journal of Ophthalmology, 2004, 88, 469-473.	3.9	6
498	Screening for mutations in the phosphatidylinositol 4-kinase 2-alpha gene in autosomal recessive hereditary spastic paraplegia. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2011, 12, 148-149.	2.1	6
499	Kjellin syndrome: hereditary spastic paraplegia with pathognomonic macular appearance. Practical Neurology, 2014, 14, 278-279.	1.1	6
500	Diagnostic clues and manifesting carriers in fukutin-related protein (FKRP) limb-girdle muscular dystrophy. Journal of the Neurological Sciences, 2015, 348, 266-268.	0.6	6
501	<i>VPS13C</i> -Another Hint at Mitochondrial Dysfunction in Familial Parkinson's Disease. Movement Disorders, 2016, 31, 1340-1340.	3.9	6
502	Analysis of the prion protein gene in multiple system atrophy. Neurobiology of Aging, 2017, 49, 216.e15-216.e18.	3.1	6
503	GYG1 causing progressive limb girdle myopathy with onset during teenage years (polyglucosan body) Tj ETQq1	1 0,78431	4 rgBT /Over
504	Quick Flicks: Association of Paroxysmal Kinesigenic Dyskinesia and Tics. Movement Disorders Clinical Practice, 2018, 5, 317-320.	1.5	6

#	Article	IF	CITATIONS
505	Assessment of the Subarachnoid Hemorrhage International Trialists (SAHIT) Models for Dichotomized Long-Term Functional Outcome Prediction After Aneurysmal Subarachnoid Hemorrhage in a United Kingdom Multicenter Cohort Study. Neurosurgery, 2020, 87, 1269-1276.	1.1	6
506	DRPLA: understanding the natural history and developing biomarkers to accelerate therapeutic trials in a globally rare repeat expansion disorder. Journal of Neurology, 2021, 268, 3031-3041.	3.6	6
507	<i>ANGPTL6</i> Genetic Variants Are an Underlying Cause of Familial Intracranial Aneurysms. Neurology, 2021, 96, e947-e955.	1.1	6
508	RSRC1 loss-of-function variants cause mild to moderate autosomal recessive intellectual disability. Brain, 2020, 143, e31-e31.	7.6	6
509	Negative screening for 12 rare LRRK2 pathogenic variants in a cohort of Nigerians with Parkinson's disease. Neurobiology of Aging, 2021, 99, 101.e15-101.e19.	3.1	6
510	Bi-allelic loss-of-function OBSCN variants predispose individuals to severe recurrent rhabdomyolysis. Brain, 2022, 145, 3985-3998.	7.6	6
511	Screening for the APP codon mutations in Alzheimer's disease. Neuroscience Letters, 1993, 154, 161-162.	2.1	5
512	The small, spastic, and furrowed tongue of Allgrove syndrome. Neurology, 2009, 72, 1366-1366.	1.1	5
513	Call for participation in the neurogenetics consortium within the Human Variome Project. Neurogenetics, 2011, 12, 169-173.	1.4	5
514	Extending the clinical spectrum of pain channelopathies. Brain, 2012, 135, 313-316.	7.6	5
515	Ataxia with oculomotor apraxia type 2: an evolving axonal neuropathy. Practical Neurology, 2018, 18, 52-56.	1.1	5
516	Parkinson's Disease in Central Asian and Transcaucasian Countries: A Review of Epidemiology, Genetics, Clinical Characteristics, and Access to Care. Parkinson's Disease, 2019, 2019, 1-7.	1.1	5
517	A de novo truncating mutation in ASXL1 associated with segmental overgrowth. Journal of Genetics, 2019, 98, 1.	0.7	5
518	Sensitivity and specificity of blood-fluid levels for oral anticoagulant-associated intracerebral haemorrhage. Scientific Reports, 2020, 10, 15529.	3.3	5
519	A homozygous GDAP2 loss-of-function variant in a patient with adult-onset cerebellar ataxia. Brain, 2020, 143, e49-e49.	7.6	5
520	Baseline factors associated with early and late death in intracerebral haemorrhage survivors. European Journal of Neurology, 2020, 27, 1257-1263.	3.3	5
521	Brownâ^'Vialettoâ^'Van Laere and Fazioâ^'Londe syndromes: <i>SLC52A3</i> mutations with puzzling phenotypes and inheritance. European Journal of Neurology, 2021, 28, 945-954.	3.3	5
522	R1352Q <i>CACNA1A</i> Variant in a Patient with Sporadic Hemiplegic Migraine, Ataxia, Seizures and Cerebral Oedema: A Case Report. Case Reports in Neurology, 2021, 13, 123-130.	0.7	5

#	Article	IF	CITATIONS
523	Allelic and phenotypic heterogeneity in Junctophillin-3 related neurodevelopmental and movement disorders. European Journal of Human Genetics, 2021, 29, 1027-1031.	2.8	5
524	A clinical, molecular genetics and pathological study of a FTDP-17 family with a heterozygous splicing variant c.823-10G>T at the intron 9/exon 10 of the MAPT gene. Neurobiology of Aging, 2021, 106, 343.e1-343.e8.	3.1	5
525	Early-onset phenotype of bi-allelic <i>GRN</i> mutations. Brain, 2021, 144, e22-e22.	7.6	5
526	Genome-Wide Association Study of Clinical Outcome After Aneurysmal Subarachnoid Haemorrhage: Protocol. Translational Stroke Research, 2022, 13, 565-576.	4.2	5
527	Biallelic Lossâ€ofâ€Function NDUFA12 Variants Cause a Wide Phenotypic Spectrum from Leigh/Leighâ€Like Syndrome to Isolated Optic Atrophy. Movement Disorders Clinical Practice, 2022, 9, 218-228.	1.5	5
528	Reply to: Juvenile <i>PLA2G6</i> â€parkinsonism due to Indian â€~Asian' p.R741Q mutation, and response to STN DBS. Movement Disorders, 2022, 37, 658-662.	3.9	5
529	How to approach a neurogenetics diagnosis in different European countries: The European Academy of Neurology Neurogenetics Panel survey. European Journal of Neurology, 2022, 29, 1885-1891.	3.3	5
530	Apolipoprotein E and Cerebral Small Vessel Disease Markers in Patients With Intracerebral Haemorrhage. Neurology, 0, , 10.1212/WNL.00000000000200851.	1.1	5
531	Exclusion Mapping in Familial Non-Specific Dementia. Dementia and Geriatric Cognitive Disorders, 1993, 4, 163-166.	1.5	4
532	Spinocerebellar ataxia type 11. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 103, 521-534.	1.8	4
533	Sniffing out the cerebellum: Figure 1. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 952-953.	1.9	4
534	K11 C9orf72 Expansions Are The Most Common Genetic Cause Of Huntington's Disease Phenocopy Presentations In A Uk Cohort. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, A82-A82.	1.9	4
535	Novel single base-pair deletion in exon 1 of XK gene leading to McLeod syndrome with chorea, muscle wasting, peripheral neuropathy, acanthocytosis and haemolysis. Journal of the Neurological Sciences, 2014, 339, 220-222.	0.6	4
536	Syndromic associations and RNF216 mutations. Parkinsonism and Related Disorders, 2015, 21, 1389-1390.	2.2	4
537	Triple trouble: a striking new phenotype or competing genes in a family with hereditary spastic paraplegia. Journal of Neurology, 2016, 263, 1232-1233.	3.6	4
538	Are some C19orf12 variants monoallelic for neurological disorders?. Parkinsonism and Related Disorders, 2019, 65, 267-269.	2.2	4
539	The need for biochemical testing in betaâ€enolase deficiency in the genomic era. JIMD Reports, 2019, 50, 40-43.	1.5	4
540	A new family with GLRB-related hyperekplexia showing chorea in homo- and heterozygous variant carriers. Parkinsonism and Related Disorders, 2020, 79, 97-99.	2.2	4

#	Article	IF	CITATIONS
541	Haptoglobin genotype and outcome after spontaneous intracerebral haemorrhage. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 298-304.	1.9	4
542	Distinct effects on mRNA export factor GANP underlie neurological disease phenotypes and alter gene expression depending on intron content. Human Molecular Genetics, 2020, 29, 1426-1439.	2.9	4
543	Novel variants broaden the phenotypic spectrum of PLEKHG5 â€associated neuropathies. European Journal of Neurology, 2021, 28, 1344-1355.	3.3	4
544	Tay-Sachs Disease: Two Novel Rare HEXA Mutations from Pakistan and Morocco. Klinische Padiatrie, 2021, 233, 226-230.	0.6	4
545	Charcot-Marie-Tooth type 4B2 demyelinating neuropathy in miniature Schnauzer dogs caused by a novel splicing <i>SBF2 (MTMR13)</i> genetic variant: a new spontaneous clinical model. PeerJ, 2019, 7, e7983.	2.0	4
546	DYT6 mutated THAP1 is a cell type dependent regulator of the SP1 family. Brain, 2022, 145, 3968-3984.	7.6	4
547	Diagnosing Premotor Multiple System Atrophy. Neurology, 2022, 99, .	1.1	4
548	A Novel DNA Sequence Variation in the First Genetically Confirmed Allgrove Syndrome in Iran. Journal of Clinical Neuromuscular Disease, 2006, 7, 123-127.	0.7	3
549	PAW32 ITPR1 gene deletion causes spinocerebellar ataxia 15/16: a genetic, clinical and radiological description of a novel kindred. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, e32-e32.	1.9	3
550	Clinical variability and l-Dopa responsive Parkinsonism in hereditary spastic paraplegia 11. Journal of Neurology, 2012, 259, 2726-2728.	3.6	3
551	Defects of RNA metabolism in the pathogenesis of spinal muscular atrophy. Neurology, 2014, 82, 1298-1299.	1.1	3
552	G.P.22. Neuromuscular Disorders, 2014, 24, 801.	0.6	3
553	A novelTUBB4Amutation suggests that genotype-phenotype correlation of H-ABC syndrome needs to be revisited: Figure 1. Brain, 2015, 138, e370-e370.	7.6	3
554	PKD or Not PKD: That is the question. Annals of Neurology, 2016, 80, 167-168.	5.3	3
555	Verification of Inter-laboratorial Genotyping Consistency in the Molecular Diagnosis of Polyglutamine Spinocerebellar Ataxias. Journal of Molecular Neuroscience, 2016, 58, 83-87.	2.3	3
556	Further supporting evidence for REEP1 phenotypic and allelic heterogeneity. Neurology: Genetics, 2019, 5, e379.	1.9	3
557	A rare PANK2 deletion in the first north African patient affected with pantothenate kinase associated neurodegeneration. Journal of the Neurological Sciences, 2020, 410, 116639.	0.6	3
558	Identification of common genetic markers of paroxysmal neurological disorders using a network analysis approach. Neurological Sciences, 2020, 41, 851-857.	1.9	3

#	Article	IF	CITATIONS
559	Inhibition of G-protein signalling in cardiac dysfunction of intellectual developmental disorder with cardiac arrhythmia (IDDCA) syndrome. Journal of Medical Genetics, 2021, 58, 815-831.	3.2	3
560	How to diagnose difficult white matter disorders. Practical Neurology, 2020, 20, 280-286.	1.1	3
561	LRRK2 Mutations and Asian Disease-Associated Variants in the First Parkinson's Disease Cohort from Kazakhstan. Parkinson's Disease, 2020, 2020, 1-10.	1.1	3
562	The repeat variant in MSH3 is not a genetic modifier for spinocerebellar ataxia type 3 and Friedreich's ataxia. Brain, 2020, 143, e25-e25.	7.6	3
563	Novel variants underlying autosomal recessive intellectual disability in Pakistani consanguineous families. BMC Medical Genetics, 2020, 21, 59.	2.1	3
564	Prevalence of <i>C9orf72</i> hexanucleotide repeat expansion in Greek patients with sporadic ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 470-472.	1.7	3
565	Novel likely disease-causing CLN5 variants identified in Pakistani patients with neuronal ceroid lipofuscinosis. Journal of the Neurological Sciences, 2020, 414, 116826.	0.6	3
566	De novo mutation in <i>SLC25A22</i> gene: expansion of the clinical and electroencephalographic phenotype. Journal of Neurogenetics, 2021, 35, 67-73.	1.4	3
567	Editorial: Multifaceted Genes in Amyotrophic Lateral Sclerosis-Frontotemporal Dementia. Frontiers in Neuroscience, 2021, 15, 680185.	2.8	3
568	Whole-genome sequencing. Practical Neurology, 2021, 21, 322-327.	1.1	3
569	A novel variant in the DSE gene leads to Ehlers–Danlos musculocontractural type 2 in a Pakistani family. Congenital Anomalies (discontinued), 2021, 61, 177-182.	0.6	3
570	A Novel Homozygous <scp><i>ADCY5</i></scp> Variant is Associated with a Neurodevelopmental Disorder and Movement Abnormalities. Movement Disorders Clinical Practice, 2021, 8, 1140-1143.	1.5	3
571	Variant Alzheimer's disease with spastic paraparesis and cotton wool plaques is caused by PSâ€1 mutations that lead to exceptionally high amyloidâ€Î² concentrations. Annals of Neurology, 2000, 48, 806-808.	5.3	3
572	A novel frameshift deletion in autosomal recessive SBF1-related syndromic neuropathy with necklace fibres. Journal of Neurology, 2020, 267, 2705-2712.	3.6	3
573	Novel Machado-Joseph disease-modifying genes and pathways identified by whole-exome sequencing. Neurobiology of Disease, 2022, 162, 105578.	4.4	3
574	Prevalence of Fabry Disease among Patients with Parkinson's Disease. Parkinson's Disease, 2022, 2022, 1-8.	1.1	3
575	Bi-allelic variants in <i>CHKA</i> cause a neurodevelopmental disorder with epilepsy and microcephaly. Brain, 2022, 145, 1916-1923.	7.6	3
576	Mutations in <i>TAF8</i> cause a neurodegenerative disorder. Brain, 2022, 145, 3022-3034.	7.6	3

#	Article	IF	CITATIONS
577	1042â€Hereditary sensory and autonomic neuropathy type 1: correlation of severity and plasma atypical deoxy-sphyngoid bases. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, e1.68-e1.	1.9	2
578	Mutational analysis of <i><scp>PMP22</scp></i> , <i><scp>EGR2</scp></i> , <i><scp>LITAF</scp></i> and <i><scp>NEFL</scp></i> in Greek Charcot–Marie–Tooth type 1 patients. Clinical Genetics, 2013, 83, 388-391.	2.0	2
579	Hypersomnia with dilated pupils in adenosine monophosphate deaminase (<scp>AMPD</scp>) deficiency. Journal of Sleep Research, 2014, 23, 118-120.	3.2	2
580	Response to the commentary of Yates RL and DeLuca GC on the study: HLA-DRB1*1501 associations with magnetic resonance imaging measures of grey matter pathology in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2018, 19, 168-170.	2.0	2
581	Reply to: "Dopaâ€Responsive Parkinsonism in a Patient With Homozygous RFC1 Expansions― Movement Disorders, 2020, 35, 1890-1891.	3.9	2
582	Sequence variants in three genes underlying leukodystrophy in Pakistani families. International Journal of Developmental Neuroscience, 2020, 80, 380-388.	1.6	2
583	Questions on <i>NOTCH2NLC</i> Repeat Expansions in Parkinson Disease. JAMA Neurology, 2021, 78, 762.	9.0	2
584	Expanding the mutational landscape and clinical phenotype of the <i>YIF1B</i> related brain disorder. Brain, 2021, 144, e85-e85.	7.6	2
585	GM1 â€Gangliosidosis Type III Associated Parkinsonism. Movement Disorders Clinical Practice, 2021, 8, S21-S23.	1.5	2
586	Genetics of NBIA Disorders. , 2015, , 263-291.		2
587	Age-dependent epileptic encephalopathy associated with an unusual co-occurrence of ZEB2 and SCN1A variants. , 2020, 22, 111-115.		2
588	Genetic Variability and Alzheimer's Disease. , 1994, , 190-198.		2
589	Myoclonic status epilepticus and cerebellar hypoplasia associated with a novel variant in the GRIA3 gene. Neurogenetics, 2021, , 1.	1.4	2
590	The clinical characteristics of familial cluster headache. Cephalalgia, 2022, , 033310242210764.	3.9	2
591	A complex epileptic and dysmorphic phenotype associated with a novel frameshift KDM5B variant and deletion of SCN gene cluster. Seizure: the Journal of the British Epilepsy Association, 2022, 97, 20-22.	2.0	2
592	Biallelic Variants in the Ectonucleotidase <scp><i>ENTPD1</i></scp> Cause a Complex Neurodevelopmental Disorder with Intellectual Disability, Distinct White Matter Abnormalities, and Spastic Paraplegia. Annals of Neurology, 2022, 92, 304-321.	5.3	2
593	A Commentary on â€~Four novel C20ORF54 mutations identified in Brown–Vialetto–Van Laere syndrome patients.'. Journal of Human Genetics, 2012, 57, 555-555.	2.3	1
594	Genetic linkage analysis of a large family with photoparoxysmal response. Epilepsy Research, 2012, 99, 38-45.	1.6	1

#	Article	IF	CITATIONS
595	Severe Dejerineâ€Sottas disease with respiratory failure and dysmorphic features in association with a PMP22 point mutation and a 3q23 microdeletion. Journal of the Peripheral Nervous System, 2012, 17, 223-225.	3.1	1
596	ADULT LEUKODYSTROPHY: MULTI-DISCIPLINARY STRUCTURED APPROACH. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, e4.196-e4.	1.9	1
597	Neuropathological findings from a human post mortem case of distal hereditary motor neuropathy (dHMN) due to p.Ser135Phe HSPB1 mutation and transgenic mice with mutant or wild-type HSP27 overexpression. Neuromuscular Disorders, 2015, 25, S283.	0.6	1
598	ECG ABNORMALITIES IN ALTERNATING HEMIPLEGIA: A BROADENED PHENOTYPE. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, e4.191-e4.	1.9	1
599	Mutations in SNX14 Cause a Distinctive Autosomal-Recessive Cerebellar Ataxia and Intellectual Disability Syndrome. American Journal of Human Genetics, 2015, 96, 1008-1009.	6.2	1
600	Reply: The p.Ser107Leu inBICD2is a mutation â€~hot spot' causing distal spinal muscular atrophy. Brain, 2015, 138, e392-e392.	7.6	1
601	Glycogen storage disease type XV: A case report. Neuromuscular Disorders, 2015, 25, S221.	0.6	1
602	Reply: ATAD1 encephalopathy and stiff baby syndrome: a recognizable clinical presentation. Brain, 2018, 141, e50-e50.	7.6	1
603	C9orf72 and intracerebral hemorrhage. Neurobiology of Aging, 2019, 84, 237.e1-237.e3.	3.1	1
604	Stem cell transplant arrests decline in case of CSF1R leukoencephalopathy. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, jnnp-2019-321021.	1.9	1
605	Association between critical care admission and 6-month functional outcome after spontaneous intracerebral haemorrhage. Journal of the Neurological Sciences, 2020, 418, 117141.	0.6	1
606	Genetic epilepsies and the Kv super-family. European Journal of Paediatric Neurology, 2020, 24, 5-6.	1.6	1
607	Parkinson's Disease in Kazakhstan: Clinico-Demographic Description of a Large Cohort. Journal of Parkinson's Disease, 2020, 10, 707-709.	2.8	1
608	LRRK2 mutations in Parkinson's disease patients from Central Europe: A case control study. Parkinsonism and Related Disorders, 2021, 83, 110-112.	2.2	1
609	Uniparental isodisomy of chromosome 2 causing MRPL44-related multisystem mitochondrial disease. Molecular Biology Reports, 2021, 48, 2093-2104.	2.3	1
610	α‧ynuclein (<scp><i>SNCA</i></scp>) <scp>A30G</scp> Mutation as a Cause of a Complex Phenotype Without Parkinsonism. Movement Disorders, 2021, 36, 2209-2212.	3.9	1
611	Magnetic resonance imaging-based scores of small vessel diseases: Associations with intracerebral haemorrhage location. Journal of the Neurological Sciences, 2022, 434, 120165.	0.6	1
612	Biallelic <scp> <i>KITLG</i> </scp> variants lead to a distinct spectrum of hypomelanosis and sensorineural hearing loss. Journal of the European Academy of Dermatology and Venereology, 2022, ,	2.4	1

#	Article	IF	CITATIONS
613	Biallelic loss of <scp> <i>EMC10</i> </scp> leads to mild to severe intellectual disability. Annals of Clinical and Translational Neurology, 0, , .	3.7	1
614	Primary progressive aphasia: ReADing the clinical GRANularity. Practical Neurology, 2022, 22, 509-514.	1.1	1
615	Microsatellite D21S210 (GT-12) allele frequencies in sporadic Alzheimer's disease. Acta Neurologica Scandinavica, 2009, 91, 145-148.	2.1	0
616	POG11 A novel mutation in the nerve-specific 5'-UTR of the Cx32 gene causing CMTX1. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, e50-e50.	1.9	0
617	P61 Diverse phenotypes are associated with missense mutations in the peripheral myelin protein 22 gene. Neuromuscular Disorders, 2010, 20, S21.	0.6	0
618	P62 Characterisation of novel mutations within HSP27 causing Charcot–Marie–Tooth disease 2F and distal hereditary motor neuropathy II. Neuromuscular Disorders, 2010, 20, S21-S22.	0.6	0
619	P63 C-Jun expression in human neuropathies: a pilot study. Neuromuscular Disorders, 2010, 20, S22.	0.6	Ο
620	P64 Genes for hereditary sensory and autonomic neuropathies: frequency in a UK series and genotype-phenotype correlations. Neuromuscular Disorders, 2010, 20, S22-S22.	0.6	0
621	O08 Characterisation of novel mutations within heat shock protein 27 causing motor axonopathies. Neuromuscular Disorders, 2011, 21, S3.	0.6	0
622	P36 TRPV4 mutations and functional characterisation in a cohort of patients with hereditary neuropathy. Neuromuscular Disorders, 2011, 21, S16.	0.6	0
623	P39 Neurofilament light chain polypeptide gene (NEFL) mutations in autosomal dominant or sporadic Charcot-Marie-Tooth disease. Neuromuscular Disorders, 2011, 21, S17.	0.6	0
624	P41 Genetic mutation frequency in patients with hereditary sensory and autonomic neuropathies (HSAN). Neuromuscular Disorders, 2011, 21, S17-S18.	0.6	0
625	P42 X-inactivation pattern in females with CMTX1. Neuromuscular Disorders, 2011, 21, S18.	0.6	0
626	P43 Genetic modifying factors for the common form of CMT1A due to the chromosome 17 duplication and other causes of CMT1 in non-CMT1A patients. Neuromuscular Disorders, 2011, 21, S18.	0.6	0
627	P45 A clinical study of the hereditary neuropathies due to mutations in the small heat shock proteins. Neuromuscular Disorders, 2011, 21, S18-S19.	0.6	0
628	1030â€Charcot-Marie-tooth disease: genetic diagnoses in a specialist clinic. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, e1.57-e1.	1.9	0
629	073â€Hereditary spastic paraplegia caused by spastin (SPAST, SPG4) mutations is found more often in males: report of novel mutations from one centre, and review of published literature. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, e1.19-e1.	1.9	0
630	NDUFA4 Mutations Underlie Dysfunction of a Cytochrome c Oxidase Subunit Linked to Human Neurological Disease. Cell Reports, 2013, 4, 402.	6.4	0

#	Article	IF	CITATIONS
631	CARDIAC FEATURES IN ADULTS WITH ALTERNATING HEMIPLEGIA. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, e4.214-e4.	1.9	0
632	Nueva mutación en SPG11 en una paciente con paraplejÃa espástica hereditaria complicada: hallazgos clÃnicos-electrofisiológicos y moleculares. Neurologia Argentina, 2014, 6, 155-159.	0.3	0
633	Caveolinopathy presenting with muscle pain and rhabdomyolysis. Neuromuscular Disorders, 2015, 25, S297.	0.6	Ο
634	RYR1-related exertional rhabdomyolysis: Expanding spectrum and diagnostic challenges. Neuromuscular Disorders, 2015, 25, S257-S258.	0.6	0
635	Novel mutation of the ntkr1 gene in a patient with hereditary sensory and autonomic neuropathy type iv phenotype. Journal of the Neurological Sciences, 2015, 357, e348-e349.	0.6	Ο
636	The utility of immunohistochemistry in the assessment of myopathies with tubular aggregates and cylindrical spirals. Neuromuscular Disorders, 2016, 26, S193-S194.	0.6	0
637	J9â€Probing huntington's disease phenocopy syndromes with next-generation sequencing. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A78.2-A78.	1.9	0
638	Letter re: Mystery Case: <i>CSF-1R</i> mutation is a cause of intracranial cerebral calcifications, cysts, and leukoencephalopathy. Neurology, 2017, 88, 1978-1978.	1.1	0
639	Next generation sequencing in inherited myopathies. Neuromuscular Disorders, 2017, 27, S42.	0.6	0
640	PO189â€Autonomic failure caused by adult onset alexander disease with a novel gfap mutation. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, A61.2-A61.	1.9	0
641	Reply: PRUNE1: a disease-causing gene for secondary microcephaly. Brain, 2017, 140, e62-e62.	7.6	0
642	Reply to: No evidence supports genetic heterogeneity of neuronal intranuclear inclusion disease. Annals of Clinical and Translational Neurology, 2020, 7, 2544-2545.	3.7	0
643	Some pathogenic SETX variants are partially conserved during evolution. Gene, 2021, 771, 145360.	2.2	0
644	Reply: Genetic heterogeneity of neuronal intranuclear inclusion disease. What about the infantile variant?. Annals of Clinical and Translational Neurology, 2021, 8, 1002-1004.	3.7	0
645	Novel ALDH3A2 mutations in structural and functional domains of FALDH causing diverse clinical phenotypes in SjĶgren–Larsson syndrome patients. Human Mutation, 2021, 42, 1015-1029.	2.5	0
646	Commentary: <scp>GM1</scp> â€Gangliosidosis Type <scp>III</scp> Associated Parkinsonism. Movement Disorders Clinical Practice, 2021, 8, S24-S25.	1.5	0
647	Distribution of HLA Alleles and Genotypes in Patients with Chronic Inflammatory Demyelinating Polyneuropathy. Journal of Molecular Neuroscience, 2021, , 1.	2.3	0
648	PO184â€Analysis of copy number variants in familial and sporadic parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, A59.4-A60.	1.9	0

#	Article	IF	CITATIONS
649	SPG11 Presenting with Tremor. Tremor and Other Hyperkinetic Movements, 2012, 2, .	2.0	0
650	Advancing Charcot-Marie-Tooth disease diagnostics, through the UK 100,000 Genomes Project. Medizinische Genetik, 2020, 32, 227-231.	0.2	0
651	Clinical and genetic analysis of spinocerebellar ataxia type 11. Cerebellum, 2008, 7, 1-6.	2.5	0
652	022†Functional genomics and transcriptomics further characterise and potentially improve diagnostic yield of hereditary ataxias. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, A107.3-A108.	1.9	0
653	Genomic features specific to the human lineage are associated with neurological diseases and intelligence. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, A97.1-A97.	1.9	0